
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

http://www.mshah.io

2

3

Throughout the talk there will be
interactive prompts:
● Go to slido.com
● Enter meeting #
● OR scan QR Code

4

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

11:00 - 12:30 BST Wed. April 17, 2024

75 minutes + 15 minute Q&A After
Audience: For all and all skill levels!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

5

Throughout the talk there will be
interactive prompts:
● Go to slido.com
● Enter meeting #
● OR scan QR Code

DLang a First Impression

6
Note: ‘DLang’ often yields better results on search engines versus searching ‘D’ -- thus I’ll usually use ‘Dlang’ to refer to the language

Pop Quiz: (l’examen surprise!) (1/3)

7

● Let’s take a look at an
example of D code

○ I’ll give everyone a minute to
think about it

○ Try to think about what is
being done

○ So... what does this program
do?

Pop Quiz: (l’examen surprise!) (2/3)

8

● One of the first examples on the
www.dlang.org webpage

○ An example of sorting an array!
○ Line 3:

■ There’s a built-in standard library
(named ‘Phobos’)

○ Line 5:
■ Function call using universal

function call syntax (UFCS)
○ Line 7:

■ enum constant -- initializing a
fixed-size array

○ Line 9:
■ immutable static data stored in b

○ Line 12:
■ pragma outputs value after

compilation
● Amazingly this program does most of

its work at compile-time!

http://www.dlang.org

Pop Quiz: (l’examen surprise!) (3/3)

9

● One of the first examples on the
www.dlang.org webpage

○ An example of sorting an array!
○ Line 3:

■ There’s a built-in standard
library (named ‘Phobos’)

○ Line 4:
■ Function call using universal

function call syntax (UFCS)
○ Line 7:

■ enum constant
○ Line 8:

■ immutable static data stored in
b

○ Line 12:
■ pragma outputs value after

compilation
● This program does most of its work

(the working) at compile-time!

Why you might care to
look?

● D tries to execute as
much as possible at
compile-time

○ And the
code...just looks
like regular code!

● Compile-time execution
saves the user time at
run-time -- big win!

● https://dlang.org/blog/2017/06/05/compile-time-s
ort-in-d/

● https://tour.dlang.org/tour/en/gems/compile-time
-function-evaluation-ctfe

http://www.dlang.org
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do actively write code and do consulting and technical
training on modern C++, DLang, Concurrency, and
Graphics Programming

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

10

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2024/accu

11

https://github.com/MikeShah/Talks/tree/main/2024/accu

Abstract

The D programming language (DLang) is a multi-paradigm language (like C++)
developed to solve real software engineering problems. DLang has a rich history since
its inception in 2001, and continues to be an actively evolving memory-safe language
used in industry. In this talk, I will discuss how learning and using the D language has
directly benefited my use and learning of C++ and vice versa. We'll look at the evolution
of both C++ and Dlang, and see how each language has borrowed from each other
during their most recent evolution in the past decade. Throughout the talk, I will provide
side-by-side code comparisons showing idiomatic ways to complete tasks in D
alongside C++ code examples. The goal of this talk however is not to pit one language
against the other, but rather to show how to use each language to its strengths and learn
how to become a better programmer. Audience members are expected to be familiar
with Modern C++, but are not expected to have any prior D programming experience.

The abstract that you read and enticed
you to join me is here!

12

Talk Outline

This talk consists of three pieces

1. Some Thoughts on Programming Languages
2. A D Language preview
3. C++ and DLang as they compliment each other

13

1. Some Thoughts on Programming Languages
2. A D Language preview
3. C++ and DLang as they compliment each other

14

DLang vs C++

15

DLang vs C++

16

Eh, not quite

DLang and C++

17

That’s more
accurate for the
spirit of today’s

talk

DLang and C++

18

(And of course
there are other

choices)
(Don’t read too much into where I placed the logos :))

So I’m a bit of a programming language
enthusiast

19

(Free Pascal)

20

(Free Pascal)

I’ve explored many languages
by choice

Many of you use one or more of these
programming languages

21

(Free Pascal)

Multiple languages may be needed for
work

22

(Free Pascal)

Maybe it is required for the platform

23

(Free Pascal)

Or the domain you work in

24

(Free Pascal)

Maybe you get to choose

25

(Free Pascal)

And I bet at some time -- someone said to
you....

26

(Free Pascal)

You should just learn Haskell

27

(Free Pascal)

But why? :)

28

(Free Pascal)

29

30https://wall.sli.do/event/9R85JSdWhaghDHjs6DRMfK?section=ef9c8df6-9115-4740-b00b-8ceb0ee6aab0

Since you’re at my session --
you’ll have to check out
Francis’s session when it is later
released for more answers!

https://wall.sli.do/event/9R85JSdWhaghDHjs6DRMfK?section=ef9c8df6-9115-4740-b00b-8ceb0ee6aab0

The past few months...

31

● I’ve been documenting
myself trying new
programming languages for
about one hour

○ Most languages are new to me.
○ Some languages are very

popular
○ Some languages are less

mainstream

My recordings of 23 (and counting) programming
languages can be found on the playlist below

Playlist -- Programming Languages - First
Impressions:
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-
5hJ47DNAOKKLLIHjz1Tzq

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-5hJ47DNAOKKLLIHjz1Tzq
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-5hJ47DNAOKKLLIHjz1Tzq

The Art of Persuasion... (1/5)

32

One important thing to keep in mind in this talk is
that:
● I am not going to pick a better of two languages

The Art of Persuasion... (2/5)

33

One important thing to keep in mind in this talk is
that:
● I am not going to pick a better or two languages

CppCon 2016: Dan Saks “extern c: Talking to C Programmers about C++”
https://youtu.be/D7Sd8A6_fYU?si=wstjG6vkSEZ4345i&t=1320
(Dan Saks quoting Mike Thomas)

https://youtu.be/D7Sd8A6_fYU?si=wstjG6vkSEZ4345i&t=1320

The Art of Persuasion... (3/5)

34

One important thing to keep in mind in this talk is
that:
● I am not going to pick a better or two languagesYou’re going to have to be

motivated enough to want to
decide if you want to answer

that question

The Art of Persuasion... (4/5)

35

“You’re going to have to be
motivated enough to want to
decide if you want to answer
that question” - Mike Shah

The Art of Persuasion... (5/5)

36

“I personally think learning
new languages help you think

about concepts more
efficiently in your default
language” - Mike Shah

37

Goals (1/2)

38

But...If you remember just one
thing after this talk:

1. Set a timer for one hour
2. Go to https://tour.dlang.org/
3. Try out the D Language

https://tour.dlang.org/

Goals (2/2)

39

(At the very least, it might help
you empathize with your junior
engineers when you start from
scratch)

1. Some Thoughts on Programming Languages
2. A D Language preview
3. C++ and DLang as they compliment each other

40

The D Programming Language
(Le langage de programmation D)

41

42

So what is the D Programming Language? (1/2)

43https://dlang.org/

So what is the D Programming Language? (2/2)

https://dlang.org/

D Language History - Created by Walter Bright [wiki]

● Walter Bright
○ Wrote a C Compiler (Datalight C compiler)
○ Famously created the Zortech C++ compiler
○ Designed the game Empire

■ (There is even a translation of Empire to D!)
○ Between 1999-2006 worked alone on D version 1

programming language.
■ (Originally it was the Digital Mars Compiler, but

everyone colleagues and friends insisted on calling it
the next evolution to C++, thus the name ‘D’)

● Around 2006 or 2007 -- D2 would start being
developed with Andrei Alexandrescu and others.

○ Full history here - Origins of the D Programming Language
■ https://dl.acm.org/doi/pdf/10.1145/3386323

44

Dconf 2022 in London

D hosts an online and
in-person conference every
year: https://dconf.org/

https://en.wikipedia.org/wiki/Walter_Bright
https://dl.acm.org/doi/pdf/10.1145/3386323
https://dconf.org/

So, over the last 25 years -- now three D Compilers!

45

● DMD is the official reference compiler
○ The compiler is open-source and you can

fork a copy of it today
○ DMD is a very fast compiler (in part

because of D’s module system)
● GDC

○ GCC-based D Compiler Frontend
○ Good GDB support

● LDC - LLVM based D Compiler
○ Allows you to get LLVM optimizations and

target many architectures

Note: Common for D programmers to
develop in DMD for quick edit-compile-run
cycles, and then deploy using GDC or LDC

https://dlang.org/download.html

https://dlang.org/download.html

Downloading the Tools

46

● The download of any of the compilers
is relatively simple and available for
many architectures from the
homepage

○ Along with the download, you also get:
■ Dub - the package manager for

managing dependencies and as a
lightweight build tool.

■ Other useful tools like dfmt (a code
formatter) and dscanner (a linter)
exist

■ A VSCode extension (code-d) is
available, as well as some support in
IntelliJ for D.

https://dlang.org/download.html

Note: Brian Callahan gets a lot of credit for bringing D to OpenBSD https://briancallahan.net/blog/20211013.html

https://dlang.org/download.html
https://briancallahan.net/blog/20211013.html

DLang Domains

● DLang is a general purpose systems
programming language

○ D can be used in any domain.
● Dlang has found some niches in

performance-based domains:
○ e.g. image processing, gaming, streaming,

finance, and simulation

47
https://dlang.org/orgs-using-d.html

https://dlang.org/orgs-using-d.html

AAA Game Projects in D

● It’s also worth noting that D has been
used in AAA Commercial Games

○ Ethan Watson has a wonderful
presentation describing that experience

○ Link to talk:
https://www.gdcvault.com/play/1023843/D-
Using-an-Emerging-Language

● Talk Abstract: Can you use D to make games? Yes.
Has it been used in a major release? It has now. But what
benefits does it have over C++? Is it ready for mass use?
Does treating code as data with a traditional C++ engine
work? This talk will cover Remedy's usage of the D
programming language in Quantum Break and also
provide some details on where we want to take usage of
it in the future.

48

https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQX
VyMTYxMzY1ODg@._V1_.jpg

Utilized the D Programming Language Quantum Break -- Game

https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg

● Website with games and tutorials: https://gecko0307.github.io/dagon/
● Github or Dub Repository: https://github.com/gecko0307/dagon | https://code.dlang.org/packages/dagon

49

Built in the D Programming Language Dagon -- Game Engine

https://gecko0307.github.io/dagon/
https://github.com/gecko0307/dagon
https://code.dlang.org/packages/dagon

● Website with games: https://circularstudios.com/
● Github or Dub Repository: https://github.com/Circular-Studios/Dash
● Forum Post: https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org 50

Built in the D Programming Language Dash -- Game Engine

https://circularstudios.com/
https://github.com/Circular-Studios/Dash
https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org

● Github or Dub Repository: https://github.com/MrcSnm/HipremeEngine
● DConf 2023 Talk: DConf '23 -- Hipreme Engine: Bringing D Everywhere -- Marcelo Mancini

51

Built in the D Programming Language Hipreme Engine -- Game Engine

https://github.com/MrcSnm/HipremeEngine
https://www.youtube.com/watch?v=jgygD7B_CPk

● Website: https://gdtk.uqcloud.net/ and https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
● Github or Dub Repository: https://github.com/gdtk-uq/gdtk

52

Built in the D Programming Language Eilmer(/ɛlmə/) Compressible Flow Simulator

https://gdtk.uqcloud.net/
https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
https://github.com/gdtk-uq/gdtk

53

Built in the D Programming Language RayTracer

● Talk/Website: https://www.youtube.com/watch?v=nCIB8df7q2g (Dconf 22)
○ Follow on talk: https://www.youtube.com/watch?v=MFhTRiobWfU (Dconf Online 22)

● Github or Dub Repository: https://github.com/MikeShah/Talks/tree/main/2022/2022_dconf_London

● So here was a Raytracer that I
built-in the D programming language

○ An obvious candidate for
parallelism from the
std.parallelism module

https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU
https://github.com/MikeShah/Talks/tree/main/2022/2022_dconf_London
https://dlang.org/phobos/std_parallelism.html#:~:text=concurrency.-,std.,with%20a%20future%2Fpromise%20paradigm.

54

(Aside)

● More on the previous open-source projects and the source code
● https://www.youtube.com/watch?v=yLaUsmLr9so

https://www.youtube.com/watch?v=yLaUsmLr9so

DLang Features

● We’ve seen compile-time function execution
(ctfe) as one modern feature of the D language
compiler (at the very start of the talk)

● The language itself supports many nice quality of
life features for safety and productivity -- for
example:

○ Built-in dynamic arrays
○ Built-in Associative arrays (i.e. map/hashtable/dictionary)
○ Bounds checked arrays

■ (With ability to disable if needed)
○ lambda’s and delegates
○ Uniform Function Call Syntax (UFCS)
○ Object-Oriented Programming Paradigm
○ Functional paradigms (lazy evaluation, pure functions)
○ Concurrency
○ Garbage Collection or manual memory management

options
■ i.e. You can just use malloc/free if you really want!

○ and more!
55https://dlang.org/comparison.html

https://dlang.org/comparison.html

Phobos The Standard Runtime Library

● Phobos is the standard runtime library that
comes with D.

○ Thus, I like to think of D as a ‘batteries included’
language

○ You can get started immediately and be productive
and writing software to solve problems.

■ Phobos comes ready with a rich set of
algorithms, containers (data structures), and
other common libraries for solving problems.

● “Containers” are the standard
libraries data structures (beyond the
built-in types) that describe how we
access and store data.

● And the “algorithms” and “ranges”
and are building blocks for
computation

● The Standard Library (std) has common data structures
and ability to work with data (json, csv, xml), compression
(zip), networking (sockets, curl), etc. https://dlang.org/phobos/index.html

https://dlang.org/phobos/index.html

Hello DLang (1/2)

● Here it is, the “Hello World”
program in D

○ You’ll see some familiar
constructs in other languages

○ import brings in a ‘module’ a
library of code.

■ prefixed with the ‘std’ means
this comes from the
standard library

■ The standard library is
called ‘phobos’ in D.

○ You’ll see ‘writeln’ for writing out
text (or we can use the fully
qualified name std.stdio.writeln)

57

Hello DLang (2/2)

● Observe at the bottom, that D
is a compiled language

○ This means we need to invoke the
dmd compiler

■ dmd - the compiler
■ hello.d - source file we want

to compile
■ -of=prog - Tells us that we

want the output binary to be
named ‘prog’

■ ./prog - runs our executable
(note this may be prog.exe
on windows)

58

Note: on modules

● imports do not have to have a
global scope, often times we’ll
prefer to have a scope local to
a function.

● More info:
○ https://tour.dlang.org/tour/en/basic

s/imports-and-modules

59

https://tour.dlang.org/tour/en/basics/imports-and-modules
https://tour.dlang.org/tour/en/basics/imports-and-modules

rdmd

60

rdmd introduction

● Now I’m going to re-run the
hello.d program again

○ This time with a ‘shortcut’, the
rdmd

○ This allows me to speed up my
edit-compile-run cycle

■ rdmd is a smart tool to
help us iterate more
quickly when writing D
code

● (Note: You can also use:
‘dmd -run hello.d)

61

rdmd scripts

● You can check out more here:
https://dlang.org/rdmd.html

○ Having the rdmd tool allows us to
essentially use the D compiler like
a scripting language

■ See example to the right

62

https://dlang.org/rdmd.html

Basic Types - D gets the Defaults Right (1/2)

● The size of variables is fixed
regardless of platform.

○ e.g. An int is always 4 bytes
● Variables are default initialized

○ In some languages (e.g. C or C++)
variables must be explicitly
initialized

○ D initializes everything
■ (You can explicitly leave

something uninitialized with
=void however if you truly do
not want say a large buffer of
data to be zero initialized)

63

Basic Types - D gets the Defaults Right (2/2)

● You can find the defaults and
properties here:

○ https://dlang.org/spec/property.html
○ To the right are some examples of

some of the things you can query --
see the documentation for more.

64

https://dlang.org/spec/property.html

Memory - D is a systems language (1/3)

● D has a garbage collector (gc) that
is on by default (it can be turned
off)

○ This means that we don’t have to
explicitly delete memory that we have
allocated.

○ In the example on the right, we
dynamically allocate an array of 10
integers

○ Then I use a ‘foreach’ loop to display
them all.

○ The garbage collector will periodically
run, and remove any memory that
cannot be reached for us.

65

Memory - D is a systems language (2/3)

● D does allow us to use pointers
as shown on line 7

● We can use the ‘&’ operator to
get the address of a variable.

○ Observe the address printed out
below.

66

Memory - D is a systems language (3/3)

● D pays extra attention to memory
safety.

○ You can add an @safe attribute after a
function, and this will ensure that memory
safety bugs are avoided.

○ @system is the ‘default’ however -- so
observe on line 9 we can manipulate
memory.

■ While this is the default,
■ try changing @system to @safe on

line 9, you’ll see the compiler give you
an error that this is not verified to be
safe code.

67

(Aside)Explicit Memory Allocation (1/3)

● We can also use the
standard C libraries (libc)
malloc and free functionality
to allocate our own
memory.

○ If you want to completely
disable the garbage collector,
that is also an option

● The point is that D gives
you several options for how
to handle memory.

68

(Aside)Explicit Memory Allocation (2/3)

● Observe in this example, we can
create a ‘slice’ (line 8) and access
the memory more conveniently.

○ Note: When we write out the malloc’d
memory that our slice also points to,
observe that we have garbage values.

■ So when using C libraries, we
play by C’s rules (memory is not
initialized).

■ In this class, prefer to just use
D’s garbage collector unless
otherwise stated.

■ (Note: In D we can do:
auto[50] memory= void; if we
want uninitialized memory)

69

(Aside)Explicit Memory Allocation (3/3)

● Here’s another idiomatic D
language improvement with
what’s called a scope
guard.

○ Notice at line 14-16, I can
create what is equivalent to a
try-catch-finally block.

○ Scope guards however (with
‘exit’) will always execute, and
is a bit cleaner in my opinion
with complicated control flow.

70

Avoiding Garbage Collection - @nogc

● The @nogc attribute can mark a
function as something that will not
collect.

○ You can effectively disable garbage
collection for your entire program, but
the attribute is transitive

○ Meaning if you allocate (which writeln
does -- we need space for a string),
then you cannot use those functions.

● With care @nogc can help give
you performance for allocations
when needed.

71

(Aside) More on D’s Memory Allocation

● Here’s a list of articles for more on memory
allocation, in an order that would be reasonable to
read them.

● https://dlang.org/blog/the-gc-series/
○ A series of several articles on the garbage collector (gc),

stack, heap, profiling, and more
○ We’ll talk about some of these topics throughout the course.

● Garbage Collection in the D Programming Language
○ https://dlang.org/spec/garbage.html

● https://dlang.org/blog/2017/06/16/life-in-the-fast-lane/
● DConf 2019 Day 1 Keynote: Allocating Memory with

the D Programming Language -- Walter Bright
○ https://www.youtube.com/watch?v=_PB6Hdi4R7M

72

https://dlang.org/blog/the-gc-series/
https://dlang.org/spec/garbage.html
https://dlang.org/blog/2017/06/16/life-in-the-fast-lane/
https://www.youtube.com/watch?v=_PB6Hdi4R7M

const

● D supports ‘const’ qualifier
on variables.

○ This means that you cannot
in the current scope change
the value

● In general -- we like
making data ‘const’ to
minimize state in our
program if data is
read-only

73

immutable - Data never ever changes

● immutable data in D is truly
read-only

○ This is even safer -- and important for
parallel programming.

■ i.e. we like a guarantee that data
cannot change.

● This becomes very important when
working with pointers

○ (next slide)

74

Immutable data is safer

● Here’s an example showing that
with immutable data, we get an
even stronger guarantee

● const is still good to use -- just
means we cannot reassign our
pointer

○ The underlying data may change
however.

75

Control Flow

● if/else/elseif supported in other
languages

● switch statement more
powerful than C and C++

○ Can support ranges
■ e.g. case 0: .. case 5:

○ Can also switch on ‘strings’ as
well.

○ Can also switch on enums

76

Functions

● D allows local functions (line 5
and 6) for further encapsulation

● At lines 13 you can also create
anonymous (unnamed)
functions

● Line 17 shows another way to
create a one line function
(lambda)

77

Higher Order Functions

● D supports the passing of
functions using a nice syntax,
the function keyword

○ Note: When working with
classes/structs, if we want a
function pointer to a member
function we use delegates to
capture state.

78

Universal Function Call Syntax and Chaining (1/2)

● Allows you to call free functions with
the ‘.’ syntax

○ e.g.
■ func(param)) is called as
■ param.func.

○ d tour - uniform-function-call-syntax-ufcs
● Article by Walter Bright

○ [archived link]

79

https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://web.archive.org/web/20121218051921/https://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394

Universal Function Call Syntax and Chaining (2/2)

● UFCS allows you to more
conveniently chain together
function calls

○ Here’s an example of chaining
together several calls

● Note: It can be useful to
space out the calls.

80

More on Functions

● D Supports more with functions:
○ pure
○ lazy
○ memoization

81

pure functions [dlang tour on pure]

● Function purity is also an important part of
functional programming

○ A strongly pure function is one which has no side
effects (i.e. parameters are not modified.)

■ The same input provides the same output
○ We can also have ‘weakly pure’ functions which

have mutable parameters (parameters passed by
reference whether explicitly (with the ref
parameter) or implicity (e.g. a class or pointer)

● More on Pure: [Dlang Episode 68] D
Language - Functions - Part 15 of n - pure
functions

82

https://tour.dlang.org/tour/en/gems/functional-programming
https://www.youtube.com/watch?v=PAXHOEufVFM
https://www.youtube.com/watch?v=PAXHOEufVFM
https://www.youtube.com/watch?v=PAXHOEufVFM

Type Deduction with auto

● D allows for type deduction with the
‘auto’ keyword

● For functions the return type can be
deduced using ‘auto’

○ (arguments of functions however cannot
be auto, unless they are ‘auto ref’)

● “almost always auto” - is the
general rule (is fine if the type is
obvious, but I usually prefer explicit
types stil)

83

(Aside) ‘auto’

● On line 7 I have used ‘auto’ in D to
declare the type.

● ‘auto’ is smart enough to deduce that
we’re storing in address on the right
hand side, and that the type of ‘x’ is an
int.

○ Thus: typeid(px) is a int*
○ (This code is equivalent to the previous slide)

84

Type Creation - typeof

● Making use of type deduction to
create new types with typeof

○ This example ensures that
whatever type is deduced from i,
the variable ‘j’ will also be that type.

85

Function Templates

● Function template syntax allows you
to parametrize your functions.

○ Line 4, ‘T’ is substituted for the type
○ At line 10 and line 14 the type ‘int’ and

‘double’ respectively is substituted in.
● The notation again for choosing the

type is with the ‘!’
○ Other languages use a set of <>

■ e.g. C++: std::vector<int>
■ e.g. Java: List<String>

86

Template Constraints

● At line 6 observe that we can further
add template constraints for what is
allowed

○ Note: We’ve added the std.traits library
which lets us at compile-time check that
the types are basic types

● Template constraints are probably
something new, but D allows you to
write them to ensure code meets
requirements

○ https://dlang.org/articles/constraints.html
○ Template Constraints are like ‘concepts

in c++’

87

https://dlang.org/articles/constraints.html

Template Constraints - Fail

● This example fails as
strings are not a basic
type

○ Strings are an immutable
array of characters

■ i.e. immutable char[]
● Note: isBasicType

actually isn’t the best way
to check here, we’d rather
have ‘isAddable’

○ See:
https://dlang.org/articles/con
straints.html

88

https://dlang.org/articles/constraints.html
https://dlang.org/articles/constraints.html

Static Arrays (Fixed-sized arrays)

● Static Arrays are
declared with the type
and the size.

● Sometimes these are
also called ‘fixed-sized’
arrays.

○ These arrays are stack
allocated.

○ Static arrays size cannot
be changed -- they are
fixed-size...

89

Dynamic Arrays

● Dynamic Arrays
○ Heap allocated with ‘new’
○ Size can be queried with .length

as well
○ Can be concatenated with ~

operator
■ (We do not overload the

‘+’ operator)
● https://tour.dlang.org/tour/en/

basics/arrays
○ More:

https://tastyminerals.github.io/ta
sty-blog/dlang/2020/03/22/multi
dimensional_arrays_in_d.html

90

https://tour.dlang.org/tour/en/basics/arrays
https://tour.dlang.org/tour/en/basics/arrays
https://tastyminerals.github.io/tasty-blog/dlang/2020/03/22/multidimensional_arrays_in_d.html
https://tastyminerals.github.io/tasty-blog/dlang/2020/03/22/multidimensional_arrays_in_d.html
https://tastyminerals.github.io/tasty-blog/dlang/2020/03/22/multidimensional_arrays_in_d.html

Associative Arrays (and sneak peak at alias)

● Associative Arrays
○ a.k.a dictionaries, hashmaps, hash tables
○ array

● https://tour.dlang.org/tour/en/basics/arrays

91

https://tour.dlang.org/tour/en/basics/arrays

DLang strings and char[]

● In DLang, strings are again
○ alias string = immutable(char)[];

■ That means we cannot
change strings

○ If we want a string that we can
modify, just make it an array of
characters

■ i.e. char[] mutable_string =
“Hello friends”;

○ See
https://tour.dlang.org/tour/en/basic
s/alias-strings

92

dup example https://dlang.org/library/object/dup.html

https://tour.dlang.org/tour/en/basics/alias-strings
https://tour.dlang.org/tour/en/basics/alias-strings
https://dlang.org/library/object/dup.html

Slices

● Slices themselves point to already
existing memory

○ “a view into memory”
● Very quick way to get a few into data

○ Again -- use .dup if you want to initialize a
new array with its own copy of previous
data

○ Can use $ as a shortcut for end of
collection

○ https://tour.dlang.org/tour/en/basics/slices
○ Great article on slices

■ https://dlang.org/articles/d-array-arti
cle.html

93

https://tour.dlang.org/tour/en/basics/slices
https://dlang.org/articles/d-array-article.html
https://dlang.org/articles/d-array-article.html

Ranges

● A very brief introduction into the
idea of ‘ranges’ in the D
language.

○ https://tour.dlang.org/tour/en/basics/ra
nges

○ C++ 20 similarly has ranges
■ D however leans fully into

ranges, meaning you do not
see begin/end iterators in the
standard library

94

https://tour.dlang.org/tour/en/basics/ranges
https://tour.dlang.org/tour/en/basics/ranges

Multi-Paradigm

● D supports procedural
○ Object Oriented
○ Functional
○ Generic
○ Multi-threaded
○ Parallel
○ etc.

95

Object-Oriented Programming Paradigm: structs

● structs are aggregate types, made
up of 1 or more other types

● structs are known as ‘value types’
○ They are by default stack allocated

■ (Can be heap allocated with ‘new’
however)

○ They do not allow for inheritance
however

■ (The type is final)
○ This distinguishment can often be tricky

for new programmers, but it’s a good
“design decision” that you have to make
up front when writing code.

96

Object-Oriented Programming Paradigm: Classes

● Classes are accessed solely by
references (i.e. they must be
dynamically allocated)

○ They’re meant for dynamic
polymorphism.

○ D is similar to Java in how it utilizes
classes for inheritance

■ D supports single inheritance of
implementation

■ D supports multiple inheritance
using interfaces

97

Struct versus classes

● In some languages there is no distinguishment, but in more modern
languages the distinguishment between structs and classes is important

○ You decide up front if a type can be inherited from (i.e. by using a class)

98

Classes and Interfaces

99

● An interface in D provides a ‘blueprint’ that
classes must inherit from

○ We cannot otherwise create an instance of ‘Animal’
from the example on the right.

abstract class (1/2)

● Note: In D we also have abstract
classes

○ https://dlang.org/spec/class.html#abstract
○ These are similar to interfaces, but you can

also add properties (i.e. member variables)
○ Same rules as an interface however --

cannot instantiate a class marked as abstract
or with members that are abstract.

100

https://dlang.org/spec/class.html#abstract

abstract class (2/2)

● Here’s an example
○ Think of ‘abstract classes’ as a way to

provide a more powerful interface, if
you think there is some default
functionality that is needed in a class.

○ (Note: Another way to achieve this in
an Interface is by providing ‘final’
functions, but you still cannot have any
‘state’ in in interface (i.e. no member
variables)

101

Code Analysis - Loop versus ‘map’

102

● Let’s take a look at this piece of
code

○ See if you can figure out the results that
will be written out

○ map again may be new for folks who
haven’t done functional programming

■ But I assure you -- the ‘Loop style’
and ‘Functional-style’ will generate
the same result.

● (Note: You could write this as a
line-line function:

○ iota(1,4,1).map!(a=>a+1).writeln;

Code Analysis - Loop versus ‘filter’

103

● Let’s take a look at this one
-- filter

○ Again lines 10-17 represents
one experiment

○ Lines 21-23 represent the
functional style.

Code Analysis - Loop versus ‘reduce’

104

● Observe again the
same experiment --
reduce

○ Which code has fewer
branches?

○ Which code has fewer
decisions?

D Language - Templates

105

Types

106

● D is a statically typed language
○ This means that at compile-time,

symbols (i.e. variables and functions)
store data in a format (i.e. integer, float,
etc.) that does not change.

● What this means is, we often have
to write different variations of
functions to handle different inputs.

○ Observe the two different ‘add’ functions
(addi and addf) to the right with different
types for the parameters.

Function Overloads (1/2)

107

● Note that languages like D (and
C++, Java) support function
overloading, such that every
function does not have to be
uniquely named.

○ This means that we can just name the
function ‘add’,

○ The compiler is smart enough to deduce
from the function signature (the name +
parameter types) which version of the
add function to call.

Function Overloads (2/2)

108

● Also observe in this example
though, that it may become
‘exhaustive’ to type out every
particular combination

○ This is where templates can be useful
○ We will however find out, that templates

are even more useful of a mechanism
for meta-programming

Templates - Function Template

109

● Templates are a mechanism for
generating code.

○ One of the main uses of templates is for
enabling generic programming
paradigm.

● Observe the code example on the
right for writing a ‘generic’ or
‘templated’ version of add.

○ The first template parameter (T) after add
is the type that will be replaced

○ T is also the return type.
○ Then when using our add function we

use the ! symbol to indicate the start of
the template parameter we are supplying.

Multiple template parameters

● Note, you can provide as
many template parameters
as is reasonable -- in this
case I show two

○ One issue however, is for
figuring out the return type.

○ Should it be T1 or T2?
■ In this case, it can be

neither as D avoids
implicitly converting the
types.

■ See next slide for
solution

110

Deducing the return type with ‘auto’

111

● D allows for us to use ‘auto’ to
deduce the return type.

○ This is probably the cleanest way to do
things if you have an operation (i.e. ‘+’)
that may mix types.

Template Specialization - Template Constraints

112

● One option is to provide a
template constraint

○ This is also known as a ‘concept’ in
Modern C++

● The idea is that we have checks
on a function to ensure that some
rule(s) is being followed.

○ We can have as many constraints as
we like

● Note: We’ll look at traits shortly.

Template Specialization - Specialization

113

● Observe that in this example we
‘specialize’ the template with 1 or all
of the arguments

○ This selects the best match, and we can
implement the body of hte code as
appropriate

○ This time the specialization uses the
correct concatenation operation

Templates for structs and classes

114

● Data structures can also be templated
○ This is in fact one of the best use cases of

templates in my opinion, for making containers (i.e.
data structures) that can store any type of data.

Generated Template Code

115

● It’s useful to explore the compiler and
observe that a template is actually
generating code for each instantiation.

○ For example, we have an explicit
‘DataStructure!int’ instantiation, where you
can see that the templated data is in fact
‘int[]’

■ (i.e. the substitutions are performed
for us based on the template
arguments)

Mixin

● The conversation around generating
code starts to get interesting with the
idea of a ‘mixin’

● A ‘mixin’ is literally just a piece of
legal D code that will be replaced
when you compile.

○ Observe the example to the right
○ You might be wondering why exactly we

would use what is on the right, and we
probably would not in this fashion --
however the ability to mixin strings at
compile-time is powerful with generative
capabilities.

116

Mixin and import

● With mixin’s you can
actually read in code at
compile-time from another
file.

○ Note: On the example, that
we provide with ‘-J’ a path
(in this case a ‘.’) for where
to search for import
directories.

■ It’s probably best to
have a dedicated
directory for imports if
you use them this
way.

117

Mixin template and compile-time code generation (1/2)

● Here’s a more powerful use
case of templates and
mixins.

○ Observe in this example that I
do not define ‘getter’ and
‘setter’ member functions
anywhere.

○ But how am I using them?
■ The secret lies in the

‘GenerateGetterSetter’
mixin template.

118

Mixin template and compile-time code generation

● Here’s a more powerful use
case of templates and
mixins.

○ Observe in this example that I
do not define ‘getter’ and
‘setter’ member functions
anywhere.

○ But how am I using them?
■ The secret lies in the

‘GenerateGetterSetter’
mixin template.

119

● This snippet generates how to use various compile-time features of dlang to generate code.
● The std.traits library is used for ‘introspection’ to figure out the field names of a type

○ Line 13 creates an aliasSeq (i.e. tuple) for the Fields (from std.traits) of a given type
○ Then at line 14 we iterate through every field, and effectively write a new function.
○ The mixin template (line 5) itself is paramertized for whether to generate getter or setters.

https://dlang.org/library/std/meta/alias_seq.html
https://dlang.org/library/std/traits/fields.html

Full example

● Same as previous
slides, but all code
on one slide

120

(Aside) What’s the point of this ‘meta-programming’

● Generic programming and generative programming paradigms can be very
powerful

○ Often you are thinking about how to gather information at compile-time with some ‘std.traits’
○ The point is that you can generate lots of code:

■ Sometimes that is boilerplate code that may be tedious or error-prone to type
● i.e. We probably could add various attributes like ‘pure’ to our generated code to

make it even safer
○ (Note: however, most templated code in D does infer those traits

automatically)
● Generative code can also be quite useful in the sense that in an evolving

codebase, I don’t have to constantly manage many things.
○ In our previous example, I can simply just add and remove fields and get

getter/setter functions for free without thinking about it.

121

Other things in DLang

122

Compile-Time Features

● Full string manipulation capabilities
at compile-time

○ (concatenation, indexing, selecting a
substring, iterating, comparison....)

● We’ll talk more about the various
features like compile-time
function evaluation (CTFE) as
needed.

123

https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

Threading and Safety

● When it comes to threading
○ D offers some memory safety when it comes to using

threads
■ “ Memory is thread-private by default, shared on

demand.” [Alexandrescu]
○ D otherwise has std.concurrency, which can be seen

as similar to #include <thread>
■ Message passing is also built-in however to

allow the ‘send’ing and ‘receiving’ of messages
from objects.

124

https://tour.dlang.org/tour/en/multithreading/message-passing

http://web.archive.org/web/20141217171333/http://www.drdobbs.com/article/print?articleId=217801225&siteSectionName=parallel
https://tour.dlang.org/tour/en/multithreading/message-passing

SafeD

● SafeD is a subset of the D language that focuses on
eliminating memory corruption possibilities

○ It’s still evolving, but again, D allows you to program in a safe
way.

○ https://dlang.org/articles/safed.html
● There are *whispers* of a safe or certified D

compiler -- as I learn more publically I can share.

125

https://dlang.org/articles/safed.html

Yet more to cover!

● Stack and Heap
● Avoiding Garbage Collection and the tradeoffs (@nogc)
● Ranges and iterators
● Emphasis on compile-time versus run-time
● assertions and unit testing
● casting data
● scope and safety of writing code
● interfaces
● Inheritance in classes example
● structure of a program with dub and other build systems

126

1. Some Thoughts on Programming Languages
2. A D Language preview
3. C++ and DLang as they compliment each other

127

1. Some Thoughts on Programming Languages
2. A D Language preview
3. C++ and DLang as they compliment each other (From my perspective)

128

C++ and DLang

● In a similar way that Modern C++ has evolved greatly since
C++98, DLang has also been evolving and growing since it
was first created in 2001 [wiki]

○ Learning both languages in their whole and in isolation to achieve
mastery I have found difficult -- thus why I have spent a great deal of
time learning these two languages side-by-side (Or rather -- picking up
D after many years of C++).

129

C++: How C++ Improved my DLang - Performance Minded

● Having worked in C++, perhaps one
of the big advantages is the ability to
think as a ‘systems programmer’

○ C++ has perhaps set me up to always be a
‘systems’ thinker.

○ A concrete example is that it is very
common for me to try examples on
compiler explorer, and review the
generated assembly.

● C++ makes me wear my performance
hat!

130

DLang: How DLang Improved my C++ - Security Minded

● In C++, memory is not initialized by
default

○ C++ Core Guideline ‘Always initialize an
object’ -- thus provides what is the default
behavior in D (to always initialize values)

■ https://isocpp.github.io/CppCoreGuidelin
es/CppCoreGuidelines#es20-always-initi
alize-an-object

■ (Top-right image) shows the exception to
this rule if you have some buffer that will
be immediately filled

■ In DLang, we can use ‘=void’ to leave
memory uninitialized

● Similar proposals (bottom-right)
have showed up in C++ to change
the default behavior.

131

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html

C++: How C++ Improved my DLang - C Interop

● C++ naturally interops with the C
programming language

○ Working with and interfacing with C libraries
is something most C++ programmers do.

○ So I understood DLang’s decision to use the
same ABI as C

■ Additionally, I understand the value of
‘importC’ -- which is a compiler for C,
built into the D compiler.

● https://dlang.org/spec/importc.htm
l

■ Interfacing to C in D is otherwise
relatively trivial

● https://dlang.org/spec/interfaceTo
C.html

132

https://dlang.org/spec/importc.html
https://dlang.org/spec/importc.html
https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/interfaceToC.html

C++: How C++ Improved my DLang - std::vector

● C++ knowledge of std::vector applies to dlang’s built-in dynamic array
○ In D we simply use ‘int[] myIntArray;’ to create a dynamic array.

■ However -- understanding the std::vector allocation means we may want to avoid the
expense of copying when we resize.

○ e.g. Thus, in dlang .length can be set to change the size

133

C++: How C++ Improved my DLang - Trust the STL

● C++98 through 26 has had a vast amount of
documentation for the STL

○ To new programmers -- learning to use #include
<algorithm> in C++ is probably where you’ll get the
most growth from the C++ language -- at least to start
as a programmer once learning the basics

● Leaning into the STL in C++, made it easy for
me to lean into DLang’s standard library
(Phobos) and use it.

134

https://en.cppreference.com/w/

https://en.cppreference.com/w/

● D has a larger standard library
○ Networking (std.sockets)
○ Curl
○ sql
○ json
○ zip
○ simd
○ memory mapped files -- https://dlang.org/phobos/std_mmfile.html
○ etc.

● I believe we need some form of these in the C++ STL
○ In D it makes it very easy to create at least the first prototype of tools with these libraries

available.

DLang: How DLang Improved my C++ - Trust Phobos Library

135

https://dlang.org/phobos/std_mmfile.html

DLang: How DLang Improved my C++ - Slices

● D’s uses effectively slices (i.e. fat pointers) to access data
○ Arrays thus have a ‘size’ and a ‘length’ -- similar to ‘std::span’ and ‘std::string_view’ in C++
○ Slices are non-owning (we reference the array)

■ Slices are an ‘alias’ for a part of an array, and do not trigger dynamic memory allocation.
○ Having grown comfortable with D -- it becomes difficult to no use span and string_view in C++

● Read more on the design
○ https://digitalmars.com/articles/C-biggest-mistake.html (idea of ‘fat pointers’)
○ https://dlang.org/articles/d-array-article.html (slices)

136

https://digitalmars.com/articles/C-biggest-mistake.html
https://dlang.org/articles/d-array-article.html

DLang: How DLang Improved my C++ - struct vs class

● In C++ we carry the legacy of the ‘C’ struct
● In D we make the delineation that a struct is a ‘monomorphic type’ (i.e. no

polymorphism), and a value type by default
○ I treat my C++ ‘structs’ the same way.

■ Thus, in C++ I use no inheritance for structs (mostly treating them as plain-old datatypes
(POD))

○ I find this is a helpful ‘signal’ to the design and architecture of my codebase.

137

DLang: How DLang Improved my C++ - Ranges

● Dlang uses ranges by default
○ To be honest -- one of the first things this did was

make me less scared of writing iterators in C++
■ i.e. It was easy to digest in DLang writing an

‘empty’, ‘front’, and ‘popFront’ function(), that I
understood the same idea in C++

○ Ranges also made me understand the benefits of
composition, infinite ranges, and being able to
evaluate algorithms lazily

■ One level of abstraction higher than iterators,
allows for some additional safety (i.e. harder to
provide a pair of wrong iterators -- still some risk
of invalidation however)

138https://tour.dlang.org/tour/en/basics/ranges

https://tour.dlang.org/tour/en/basics/ranges

DLang: How DLang Improved my C++ - UFCS

● Universal Function Call Syntax (UFCS)
○ This is a feature available in many languages besides D
○ When you get use to UFCS, you start thinking more so about writing ‘pure’ functions that

compose.
■ ‘pure’ functions are more likely to be able to evaluate at compile-time
■ I *think* UFCS itself is better reminding me to write functions that have one job.

○ In C++ we utilize the overloads of the pipe operator to write more composable code (or
otherwise use std::ranges)

■ An Overview of Standard Ranges - Tristan Brindle - CppCon 2019
■ https://youtu.be/SYLgG7Q5Zws?t=3335

139

https://youtu.be/SYLgG7Q5Zws?t=3335

DLang: How DLang Improved my C++ - Mixins

● In DLang, mixins and mixin
templates are very powerful
features

○ A simple ‘mixin(import(“some_file”)’ is a
useful way to embed data at
compile-time.

○ There are ways to do this in C++, but I
ultimately hope we get an #embed like
in C23

140

DLang: How DLang Improved my C++ - The Defaults

● Covered earlier, but D fixes many defaults that C++ inherited from C
● Initialization of values
● And several other small quirks --

○ https://dlang.org/blog/the-d-and-c-series/
○ https://dlang.org/articles/cpptod.html
○ int* x,y; // in D produces two pointers to integers
○ int* x,y; // in C produces x as type int* and y as type int.

● Overall, I just try to do what (I consider) the right defaults are in my D code in
my C++ code.

141

https://dlang.org/blog/the-d-and-c-series/
https://dlang.org/articles/cpptod.html

DLang: How DLang Improved my C++ - Contracts

● D has ‘in’ (pre) and ‘out’ (post) conditions
○ https://dlang.org/spec/contracts.html
○ Nice to understand how these are used in debug build for checking conditions
○ Also keeps code nice and clean for my assertions

● See ACCU 2024 talk later today by Timur on contracts
○ I think this will help me with whatever is coming in C++ 26 (I’ll tell you in exactly 3.5 hours)

142

https://dlang.org/spec/contracts.html

Other “little things”

● Sometimes learning a simpler syntax helps make
scary concepts or keywords make sense

○ In Dlang ‘typeof’ is like ‘decltype’
○ In DLang ‘template constraint’ is like ‘concept’ (‘a type system

for templates’)
■ C++ Paper

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2005/n1886.pdf

○ Delegates in the D programming language carry
state with them when passing functions around
(thus making them first-class citizens, versus a
function pointer which is not)

■ Implementing ‘functors’ in C++ and eventually
understanding the connection with lambda’s lowering
to functors was useful for wrapping my head around a
‘delegate’

143

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1886.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1886.pdf

Other “big things” - Dlang and GC

● People are afraid of Garbage Collection
○ But you get memory safety effectively for free.
○ Allocation is just as fast as with ‘new’ or ‘malloc’

■ The scan/pause is the part that probably
needs work on the allocator.

○ You don’t have to use the garbage collector (as
previously shown)

○ It looks like high powered C++ game engines
have portions that are collected

■ Maybe someone can respond to my
tweet (Is it a GC, reference counted,
arena -- help me if you know!)

○ See more on dlang garbage collection:
https://dlang.org/blog/the-gc-series/

144

https://twitter.com/MichaelShah/status/1736695501259415873

https://dlang.org/blog/the-gc-series/
https://twitter.com/MichaelShah/status/1736695501259415873

Other “big things” - Dlang and Modules

● As soon as modules are fully available in most C++ compilers -- I will use
them

○ D’s compilation is very fast, and I believe modules have one part to do with that (the language
itself, and the ability to concurrently parse it is the other)

145

Other “big things” - constexpr

● In C++ the more ‘constexpr’ stuff the
better

○ In DLang, The Compile Time Function
Execution (CTFE) (Shown to the right) means
that D pretty much tries to run everything it can
at compile-time

■ Again -- this is probably the right default

146

Other “big things” - unit testing

● Dlang has built-in unittest blocks -- the fact
that they’re there means they get used

○ Very low friction
○ An important lesson that sometimes it’s worth

adding the feature, even if it’s not perfect
● We’ll learn more about testing on Friday at

this conference :)

147

https://tour.dlang.org/tour/en/gems/unittesting

https://tour.dlang.org/tour/en/gems/unittesting

Other “big things” - ecosystem

● DLang has built-in package manager, profiler, and code-coverage (and can
utilize some of the static analyzers in gcc/ldc2)

● C++ has a vast ecosystem, but no default
○ Learning from Dlang -- For C++ I have opted to pick popular tools (e.g. cmake, perf) and

consider them my default for C++

148

Learning More About the D Language

149

More on Getting Help in D

● Usually ‘dlang keyword’ yields a result on the dlang.org homepage that I
need.

150

The D language tour

● Nice set of online tutorials
that you can work through
in one hour

○ Found directly on the D
language website under
‘Learn’

151

https://tour.dlang.org/

https://tour.dlang.org/

Understanding D: [From C to D] and [C++ to D]

152

● For those who have done some C and C++ programming, D should feel very
familiar

○ I’d also suggest that folks who have used Java, may find D with just as rich of libraries, but a
much more clean syntax.

● Useful guides
○ C to D

■ https://dlang.org/articles/ctod.html
○ C++ to D

■ https://dlang.org/articles/cpptod.html

https://dlang.org/articles/ctod.html
https://dlang.org/articles/cpptod.html

More Resources for Learning D

I would start with these two books

1. Programming in D by Ali Çehreli
a. Freely available http://ddili.org/

2. Learning D by Michael Parker

Any other books you find on D are also very
good -- folks in the D community write books
out of passion!

The online forums and discord are otherwise
very active

153

http://ddili.org/

YouTube - DLang

● I am actively adding
more lessons (nearly
100 already) about the
D programming
language

○ https://www.youtube.com
/c/MikeShah

154
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

YouTube - C++

● I am actively adding
more lessons (nearly
180 already) about the
C++ programming
language

○ https://www.youtube.com
/c/MikeShah

155
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L

Teaching D Language

● You can hear my perspective
● Even better -- you can hear the

students perspective
○ They built a networked collaborative

paint program that is also available.
● D Conf 2023:

○ YouTube:
https://www.youtube.com/live/wXTlaf
zlJVY?si=Xpy6g5h4wtIUrt2E&t=7711

○ Link to Conference Talk Description:
https://dconf.org/2023/index.html

156

https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://dconf.org/2023/index.html

Teaching C++ Language

● You can hear my perspective from ACCU 2022.
● How I Teach Modern C++ One Pixel at a Time - Mike Shah - ACCU 2022

○ YouTube: https://www.youtube.com/watch?v=qwCc__MfAWk&t=2s

157

https://www.youtube.com/watch?v=qwCc__MfAWk&t=2s

Some Anecdotal Findings (My Own)

● Simply working in a language with different defaults, may be a top factor in
improving a programmers capabilities

○ e.g. (In DLang: initialized memory, struct vs class, thread-local storage)
● Simply working in a language with a different standard library may improve

your programming capabilities
○ If anyone wants to run this type of study -- I’m around at my academic job with some interest

in studying this problem (in theory forever)

158

Goal

159

But...If you remember just one
thing after this talk:

1. Set a timer for one hour
2. Go to https://tour.dlang.org/
3. Try out the D Language

https://tour.dlang.org/

Apologies -- I missed these questions entered into slido after the talk

1. SafeRefCounted may be what you want for
a ‘smart pointer’

a. I believe there are other packages in ‘dub
repository’ that provide C++ like smart pointers
that are also thread-safe.

2. D’s stdlib has built-in types -- data
structures marked as immutable (e.g.
dynamic array) means the data referred to
cannot be changed.

a. You can otherwise have a dynamic array that can
add unchanging data (i.e. dynamic array storing
immutable values)

3. D does allow stack allocated classes using
‘scoped’ (programmer now is responsible
for deallocation in correct scope)

160

https://dlang.org/phobos/std_typecons.html#SafeRefCounted
https://dlang.org/phobos/std_typecons.html#scoped

161

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

11:00 - 12:30 BST Wed. April 17, 2024

75 minutes + 15 minute Q&A After
Audience: For all and all skill levels!

Thank you ACCU 2024!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

162

