Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice

http://www.mshah.io

SCC U]

comnfFerence
=02<4

How DLang Improves My
Modern C++ and Vice Versa

Mike Shah | T

ASCC U

conmfFeraenca
=02<4

How DLang Improves My
Modern C++ and Vice Versa

_ Join at
Throughout the talk there will be |'d
) interactive prompts: S1ao.com
Mike Shah e Go to slido.com - _
- e Enter meeting # <l #2649 488

e OR scan QR Code
i o L

SCC U]

comnfFerence
=02<4

How DLang Improves My
Modern C++ and Vice Versa

- - Social: @MichaelShah
: : : Web: mshah.io
: . B Courses: courses.mshah.io
e, e sl 3 YouTube
75 minutes + 15 minute Q&A After L e R BN \\\ . youtube.com/c/MikeShah
Audience: For all and all skill levels! s il g Z http://tinyurl.com/mike-talks

11:00 - 12:30 BST Wed. April 17, 2024

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

ASCC U

conmfFeraenca
=02<4

How DLang Improves My
Modern C++ and Vice Versa

_ Join at
Throughout the talk there will be |'d
) interactive prompts: S1ao.com
Mike Shah e Go to slido.com - _
- e Enter meeting # <l #2649 488

e OR scan QR Code
i o L

DLang a First Impression

6
Note: ‘DLang’ often yields better results on search engines versus searching ‘D’ -- thus I'll usually use ‘Dlang’ to refer to the language

Pop Quiz:

e |et'stake a look at an

example of D code
o I'll give everyone a minute to
think about it
o Try to think about what is
being done
o So... what does this program
do?

1 void main()

import std.algorithm, std.stdio;

"Starting program".writeln;

enum a = [3,

1, 2, 4, 0 1;

static immutable b = sort(a);

pragma(msg,

"Finished compilation:

", bl

Pop Quiz:

e One of the first examples on the

www.dlang.org webpage
o An example of sorting an array!
o Line 3:
n There’s a built-in standard library
(named ‘Phobos’)

o Line 5:
[Function call using universal
function call syntax (UFCS)
o Line 7:
] enum constant -- initializing a
fixed-size array

o Line 9:

[] immutable static data stored in b
o Line 12:

n pragma outputs value after

compilation
e Amazingly this program does most of
its work at compile-time!

Sort an Array at Compile-Time v

e
WwN R

[
vl b

[EY
VWO NOUTESA WN -
”~<

-

your code here

oid main()

import std.algorithm, std.stdio;

"Starting program".writeln;

enum a = [3, 1, 2, 4, 0 1;
// Sort data at compile-time
static immutable b = sort(a);

// Print the result _during_ compilation

pragma(msg, "Finished compilation: ", b);

http://www.dlang.org

Why you might care to
look?

D tries to execute as
much as possible at
compile-time

o Andthe
code...just looks
like regular code!

Compile-time execution
saves the user time at
run-time -- big win!

° https://dlang.org/blog/2017/06/05/compile-time-s
ort-in-d/
. https://tour.dlang.org/tour/en/gems/compile-time
-function-evaluation-ctfe

Compile-time code is runtime code

It's true. There are no hurdles to jump over to get things running at compile
time in D. Any compile-time function is also a runtime function and can be
executed in either context. However, not all runtime functions qualify for
CTFE (Compile-Time Function Evaluation).

The fundamental requirements for CTFE eligibility are that a function must
be portable, free of side effects, contain no inline assembly, and the source
code must be available. Beyond that, the only thing deciding whether a
function is evaluated during compilation vs. at run time is the context in
which it's called.

The CTFE Documentation includes the following statement:

In order to be executed at compile time, the function must appear in a
context where it must be so executed...

http://www.dlang.org
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

Your Tour Guide for Today

by Mike Shah

e Associate Teaching Professor at Northeastern University

in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

e | do actively write code and do consulting and technical
training on modern C++, DLang, Concurrency, and

Web
www.mshah.io

Graphics Programming 3 VouTube |
o Usually graphics or games related -- e.g. Building 3D application https://www.youtube.com/c/MikeShah
plugins Non-Academic Courses

: o : : : courses.mshah.io
e Outside of work: guitar, running/weights, traveling and Conference Talks

cooking are fun to talk about http://tinyurl.com/mike-talks

10

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

e Located here: https://github.com/MikeShah/Talks/tree/main/2024/accu

0 MikeShah |/ Talks

Code Issues Pull requests Actions

4: MikeShah

11

https://github.com/MikeShah/Talks/tree/main/2024/accu

ASCC U]

== s The abstract that you read and enticed
Abstract you to join me is here!

The D programming language (DLang) is a multi-paradigm language (like C++)
developed to solve real software engineering problems. DLang has a rich history since
its inception in 2001, and continues to be an actively evolving memory-safe language
used in industry. In this talk, | will discuss how learning and using the D language has
directly benefited my use and learning of C++ and vice versa. We'll look at the evolution
of both C++ and Dlang, and see how each language has borrowed from each other
during their most recent evolution in the past decade. Throughout the talk, | will provide
side-by-side code comparisons showing idiomatic ways to complete tasks in D
alongside C++ code examples. The goal of this talk however is not to pit one language
against the other, but rather to show how to use each language to its strengths and learn
how to become a better programmer. Audience members are expected to be familiar
with Modern C++, but are not expected to have any prior D programming experience.

Talk Outline

This talk consists of three pieces

1. Some Thoughts on Programming Languages
2. AD Language preview
3. C++ and DLang as they compliment each other

13

1.

Some Thoughts on Programming Languages

14

N\

—— —

DLang vs C++

&
T

O
e
-7

| -
O

O]
)

(©

| -

>

O

@)

©

(And of course
there are other
choices)

on’t read too much into where | placed the logos :

> [Cl Sory

I’'ve explored many languages

Many of you use one or more of these
programming languages

21

e

Multiple languages may be needed for
work

X Kotlin

Maybe it is required for the platform

Clo

Or the domain you work in

R

D

Maybe you get to choose

W 4 Y 4
A y i
pd) 5
f/ ‘.'/
V4
y A 4
g v 4

\¥ v/

And | bet at some time -- someone said to
yOou....

26

You should just learn Haskell

»-Haskell

An advanced, purely functional programming language

7

But why? :)

63 Active poll 138

Why should you learn a new programming language?

MY UIe MU UL LU IV e U

Anonymous

Show off

Anonymous
To see how to approach different problems in different ways, broadens your perspective

Anonymous
REVZR{V

Anonymous
ranges

Anonymous

Why not?

Anonymous
Curiosity

Anonymous
Different perspective on problem types

Anonymous

Join at monads

lido.com
#2649 488

Anonymous
To become a better C++ programmer

Anonymous
functional

Anonymous
To better understand pargadims that problems can exist in

Anonymous
Extend horizon

Anonymous
Perspective

Anonymous
It introduces you to new idioms, new ways of thinking

Anonymous
Exposure to a variety of programming paradigms and idioms

(e]
o

- - (0]
Since you're at my session --

| you'll have to check out
Francis’s session when it is later
released for more answers!

g

@_FFEI amming language?

ol

11:00

Nina Ranns

Mike Shah Francis Glassborow
Giovanni Asproni

#2649 488

30

https://wall.sli.do/event/9R85JSdWhaghDHjs6 DRMfK?section=ef9c8df6-9115-4740-b00b-8ceb0eebaab0

https://wall.sli.do/event/9R85JSdWhaghDHjs6DRMfK?section=ef9c8df6-9115-4740-b00b-8ceb0ee6aab0

mike shah first impression X e

(=

= Sort

§ First Look at: GOIang

The past few months...

iatieskat Golang| [Programming Languages] Episode 1 - First Impression - golang

A R Mike Shah + 1.2K views * 1 month ago

1:04:53 |

fmt.Println(x, vy, x|\ FEESEETY lang | [Programming Languages] Episode 2 - First Impression - V language

— ‘ % = | Mike Shah - 926 views - 3 weeks ago

I've been documenting
) Programming Languages = ;
myself trymg new - First Impressions 10011

TRy _Rust [Programming Languages] Episode 3 - First Impression - Rust

programming languages for ,, - e

b t h 15 videos 476 views Updated 2 days ago X & e \:07 100 | |
a 0 u 0 n e O u r » L : TS 7171g | [Programming Languages] Episode 4 - First Impression - Zig
— o \ :?\ | Mike Shah « 1.7K views * 3 weeks ago
o Most languages are new to me. —— Hq
3 50:36 |

o Some Ianguages are Very This is a playlist where | download and try /°
popu I a r out programfning Ianguages'in aboyt an

hour each. It's meant to provide a high
level overview or 'first impression’ (or in
SO m e | a n g u ag eS a re | eSS some case, revisit after a long duration). |

encourage you to do the same thing ~

ﬂ"“ (™ PO FreeBasic FreeBaslo [Programming Languages] Episode 5 - First Impression - FreeBasic

%) MJke Shah - 481 views * 2 weeks ago
q B2
(7 32: 21

ma | n Str eam whether it's turning on the camera for an | gmef " o™ Free Pascal| [Programming Languages] Episode 6 - First Impression - Free Pascal
hour, or otherwise just exploring — mprocesureq @) Mike Shah + 678 views * 2 weeks ago
something outside of your normal " \
software development sphere. e st 55 |

My recordings of 23 (and counting) programming
languages can be found on the playlist below

. FStoSEE Ruby | [Programming Languages] Episode 7 - First Impression - Ruby

/,f\} Mike Shah « 525 views + 13 days ago

3

Playlist -- Programming Languages - First ‘
Impressions:

|
/,?_\j | Mike Shah « 845 views * 9 days ago

@”"' tk3& oCaml | [Programming Languages] Episode 8 - First Impression - ocaml

. list?list=PLvv0ScY6vid-
5hJ47DNAOKKLLIH .21 TZ I "% Swift | [Programming Languages] Episode 9 - First Impression - swift

VAR A il o Chah « 40E viawie « T dave afa

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-5hJ47DNAOKKLLIHjz1Tzq
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-5hJ47DNAOKKLLIHjz1Tzq

The Art of Persuasion... (1/5)

One important thing to keep in mind in this talk is
that:

e | am not going to pick a better of two languages

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

Mike Shah + 812 views * 2 months ago

32

cppcon |

If You Remember Just One Thing...

s

= When it comes to persuasion...

“If you're arguing, you're losing.”

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

Mike Shah + 812 views * 2 months ago

CppCon 2016: Dan Saks “extern c: Talking to C Programmers about C++”
https://youtu.be/D7Sd8A6_fYU?si=wstjGEVkSEZ4345i&t=1320
(Dan Saks quoting Mike Thomas) 33

https://youtu.be/D7Sd8A6_fYU?si=wstjG6vkSEZ4345i&t=1320

CPRCONIE i

You're going to have to be
motivated enough to want to
decide if you want to answer

that question

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

Mike Shah - 812 views * 2 months ago

34

“You're going to have to be
motivated enough to want to
decide if you want to answer

that question” - Mike Shah

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

Mike Shah + 812 views * 2 months ago

35

“| personally think learning
new languages help you think
about concepts more
efficiently in your default

language” - Mike Shah

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

Mike Shah + 812 views * 2 months ago

36

3 Active poll

Can you recall one concept you learned in another language that you have applied to another language?

Anonymous
List comprehensions

Anonymous
Async Await

Anonymous
Scope(exit)

Anonymous

ML

The ideas behind functional programming

Anonymous
Join at Functional Programming ideas
H A
slido.com i
#2649 488 Anonymous

@ Anonymous

Rust ownership

Goals (1/2)

But...If you remember just one
thing after this talk:

1. Set a timer for one hour
2. Go to https://tour.dlang.org/
3. Try out the D Language

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

” FOSDEM'“ P Mike Shah + 812 views * 2 months ago

38

https://tour.dlang.org/

(At the very least, it might help

you empathize with your junior
engineers when you start from
scratch)

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

” FOSDEM'“ P Mike Shah + 812 views * 2 months ago

39

2. A D Language preview

40

The D Programming Language

So what is the D Programming Language? (1/2)

42

D 1s a general-purpose programming lan-
guage with static typing, systems-level
access, and C-like syntax. With the D
Programming Language, write fast, read
fast, and run fast.

https://dlang.org/

https://dlang.org/

D Language History - Created by Walter Bright [wiki]

e \Walter Bright

o Wrote a C Compiler (Datalight C compiler)
o Famously created the Zortech C++ compiler
o Designed the game Empire
m (There is even a translation of Empire to D!)
o Between 1999-2006 worked alone on D version 1
programming language.
m (Originally it was the Digital Mars Compiler, but
everyone colleagues and friends insisted on calling it
the next evolution to C++, thus the name ‘D’)

e Around 2006 or 2007 -- D2 would start being Dconf 2022 in London

developed with Andrei Alexandrescu and others.
o Full history here - Origins of the D Programming Language | D hosts an online and
m https://dl.acm.org/doi/pdf/10.1145/3386323 in-person conference every

year: hitps://dconf.org/

https://en.wikipedia.org/wiki/Walter_Bright
https://dl.acm.org/doi/pdf/10.1145/3386323
https://dconf.org/

So, over the last 25 years -- now three D Compilers!

e DMD is the official reference compiler
o The compiler is open-source and you can
fork a copy of it today
o DMD is a very fast compiler (in part
because of D’'s module system)

e GDC
o GCC-based D Compiler Frontend
o Good GDB support

e LDC-LLVM based D Compiler

o Allows you to get LLVM optimizations and
target many architectures

Note: Common for D programmers to
develop in DMD for quick edit-compile-run
cycles, and then deploy using GDC or LDC

Downloads

Choose a compiler (more information)

DMD GDC LDC

e Official reference compiler

e Latest D version

* Simple installation

e Very fast compilation speeds
e Architectures: i386, amd64

® GCC-based D compiler

e Strong optimization

* Great GDB support

* Architectures: i386, amd64,
x32, armel, armhf, others

e LLVM-based D compiler

e Strong optimization

e Android support

o Architectures: i386, amd64,
armel, armhf, others

About - Download About - Download About - Download

https://dlang.org/download.html

45

https://dlang.org/download.html

. DMD 2.107.0
Downloading the Tools i 8
Lhangelo N\
= Windows © | l‘\\
e The download of any of the compilers tnstaller J| 72
. . . . Language Server
is relatively simple and available for % S o)
. o start coding effectively, we recommen
many architectures from the g | e e B ek et
h Omepage @ @ Ubuntu/Debian © Zt;lz—visr;]stallthe VSCode extension code-d
o Along with the download, you also get: i385 | x86_64 | tarxz
m Dub - the package manager for About - Download
managing dependencies and as a 9 4B Fedora/Cent0S &
lightweight build tool. 1386 || %8564 || tarxz

m Other useful tools like dfmt (a code

formatter) and dscanner (a linter) openSUSE &

i386 = x86_64 tarxz

exist

m AVSCode extension (code-d) is & FreeBSD ©
available, as well as some support in . dEEl]|
Intellid for D.

https://dlang.org/download.html

https://briancallahan.net/bloq/20211013.htmi°

https://dlang.org/download.html
https://briancallahan.net/blog/20211013.html

DLang Domains

e DLang is a general purpose systems
programming language
o D can be used in any domain.
e Dlang has found some niches in
performance-based domains:

o e.g.image processing, gaming, streaming,
finance, and simulation

eBay
One of the world's largest marketplaces

Large scale data mining tools.
Command line tools in D

© GitHub

Facebook

Online social networking service

C Preprocessor warp and more
infrastructure tools.

O DConf talk

Infognition
Video processing

66 D shines from low-level control to
high-level abstractions. 99

@ Testimonial

ecratum

ecratum

Supplier Management tool for SME

Core applications (Public API, Support
app) use D.
« Hiring

F,

Funatics

'MMO Game Developer

&6 D, with its elegance, simplicity and
performance, turned out to be the
perfect replacement for Node.js 99

O DConf talk

=7 JUMIA
FOOD

JumiaFood

Instant delivery platform

66 D tremendously helps us to monitor
our entire Kubernetes infrastructure. 39

O GitHub

a0 Emsi

Emsi

Data-driven modelling
N-dimensional dataset processing, in-
memory data manipulation
O DConftalk € GitHub

funkwerk)))

Funkwerk AG

Passenger information systems

66 We use D to achieve perfect, well-
readable code. 33

O DConf talk «f Hiring

mrﬁn

Magikceraft

Interactive teaching platform

66 We use D language for microservices
and other awesome things! 93

O GitHub

https://dlang.org/orgs-using-d.html

https://dlang.org/orgs-using-d.html

Utilized the D Programming Language

AAA Game Projects in D

Quantum Break -- Game

Ask a question at goo.gl/slides/92v98z

It's also worth noting that D has been

used in AAA Commercial Games
o Ethan Watson has a wonderful
presentation describing that experience
o Link to talk:
https://www.qgdcvault.com/play/1023843/D-
Using-an-Emerging-Language

Talk Abstract: con you use D to make games? Yes.

Has it been used in a major release? It has now. But what
benefits does it have over C++? Is it ready for mass use?
Does treating code as data with a traditional C++ engine
work? This talk will cover Remedy's usage of the D
programming language in Quantum Break and also
provide some details on where we want to take usage of
it in the future.

Could you show some more examples of what
is simplier to d than c++?

Viktor Sehr

g

1x i3

=

https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy0OMGE3LTk5ZWMtY2ZkMzIOMGY 1ZTM1XkEyXkFacGdeQX

VYMTYxMzY10Da@. V1 _.jpa

48

https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg

Built in the D Programming Language Dagon -- Game Engine

e Website with games and tutorials: https://gecko0307.github.io/dagon/

e Github or Dub Repository: https://github.com/gecko0307/dagon | https://code.dlang.org/packages/dagon
49

https://gecko0307.github.io/dagon/
https://github.com/gecko0307/dagon
https://code.dlang.org/packages/dagon

Built in the D Programming Language Dash -- Game Engine

e \Website with games: htips://circularstudios.com/
e Github or Dub Repository: https://github.com/Circular-Studios/Dash
e Forum Post: https://forum.dlang.org/thread/gnagymkehjvopwxwvwig@forum.dlang.org

https://circularstudios.com/
https://github.com/Circular-Studios/Dash
https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org

=[0Il l=R D R felel=Tnalnallale M R=Tale[VETe[cl Hipreme Engine -- Game Engine

e Github or Dub Repository: https://github.com/MrcSnm/HipremeEngine
e DConf 2023 Talk: DConf '23 -- Hipreme Engine: Bringing D Everywhere -- Marcelo Mancini

https://github.com/MrcSnm/HipremeEngine
https://www.youtube.com/watch?v=jgygD7B_CPk

Built in the D Programming Language §=381iE) g ety Caa RS e)

Time: 22.50 us

Time: 22.50 us

Figure 5.7: Static temperature and mass fraction of nitrogen atoms in the flow field
from the chemical nonequilibrium simulation.

e \Website: https://gdtk.ugcloud.net/ and https://adtk.ugcloud.net/pdfs/eilmer-user-quide.pdf
e Github or Dub Repository: https://github.com/gdtk-uag/adtk

https://gdtk.uqcloud.net/
https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
https://github.com/gdtk-uq/gdtk

Built in the D Programming Language RayTracer

w,.' A 4

e S0 here was a Raytracer that |
built-in the D programming language
o An obvious candidate for
parallelism from the
std.parallelism module

e Talk/Website: https://www.youtube.com/watch?v=nCIB8df7g2g (Dconf 22)
o Follow on talk: https://www.youtube.com/watch?v=MFhTRiobWfU (Dconf Online 22)

e Github or Dub Repository: https://github.com/MikeShah/Talks/tree/main/2022/2022_dconf_London

https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU
https://github.com/MikeShah/Talks/tree/main/2022/2022_dconf_London
https://dlang.org/phobos/std_parallelism.html#:~:text=concurrency.-,std.,with%20a%20future%2Fpromise%20paradigm.

(Aside)

e More on the previous open-source projects and the source code
e https://www.youtube.com/watch?v=ylLaUsmLr9so

[Programming Languages]| Episode 19 - First Impression - dlang

Dlang (FOSDEM 2024 Talk)

815 views * 2 months ago

First Look at:

"Starting program".write @ Mike shah

’

=Lesson Description: In this lesson | present one of my favorite languages — in fact I'm breaking the rules a bit
—dlang! As many ...

enuma=[3 1 2 4 0],

’tath 1mmutable b Sort a‘

FOSDEM Rh

pragma(msg, "Fii

54

https://www.youtube.com/watch?v=yLaUsmLr9so

DLang Features

Features Overview

Navigate D's implementation of a few key programming language concepts.

e Garbage Collection

We’ve seen compile-time function execution
(ctfe) as one modern feature of the D language
compiler (at the very start of the talk)

The language itself supports many nice quality of
life features for safety and productivity -- for

example:
o Built-in dynamic arrays
o Built-in Associative arrays (i.e. map/hashtable/dictionary)
o Bounds checked arrays
m (With ability to disable if needed)
o lambda’s and delegates
o Uniform Function Call Syntax (UFCS)
o Object-Oriented Programming Paradigm
o Functional paradigms (lazy evaluation, pure functions)
o Concurrency
o Garbage Collection or manual memory management
options
m i.e. You can just use malloc/free if you really want!
o and more!

e Functions
o Function Delegates
o Function Overloading
o out parameters for functions
o Nested functions
o Function literals
Closures
Typesafe variadic arguments
Lazy function argument evaluation
Compile time function evaluation
Uniform Function Call Syntax
o User-Defined Attributes
* Arrays
o Lightweight arrays
Resizeable arrays
Built-in strings
Array slicing
Array bounds checking
Array literals
Associative arrays
String switches
Aliases

O 0O 0O O o

0O 0 0 0 0 0 0 ©o

e OOP
o Object Orientation
o Interfaces
o Single inheritance of implementation/multiple inheritance of interfaces

https://dlang.org/comparison.html %5

https://dlang.org/comparison.html

Phobos The Standard Runtime Library

e Phobos is the standard runtime library that |P"°Pos Runtime Library

CO m eS With D Phobos is the standard runtime library that comes with the D language compiler.
H H ‘ H H I Generally, the std namespace is used for the main modules in the Phobos standard library. The etc namespace is used
o Thus, | like to think of D as a ‘batteries included i aamespace] ; jorary; The R
for external C/C++ library bindings. The core namespace is used for low-level D runtime functions.

Iang uage . .) The following table is a quick reference guide for which Phobos modules to use for a given category of functionality. Note

(@] YOU can get Sta rted m med|ate|y and be prod uct|ve that some modules may appear in more than one category, as some Phobos modules are quite generic and can be applied
" in a variety of situations.
and writing software to solve problems.

m Phobos comes ready with a rich set of Modules Description
algorithms, containers (data structures), and | Algorithms &ranges
Other common |ibra ries for SOIVi ng problems . std.algorithm Generic algorithms that work with ranges of any type, including strings, arrays, and
« . ” std.range other kinds of sequentially-accessed data. Algorithms include searching, comparison,
® Conta|ners are the Sta nda rd std.range.primitives iteration, sorting, set operations, and mutation.
libraries data structures (beyond the | *-ranosinterfaces
built-in types) that describe how we UL
std.array Convenient operations commonly used with built-in arrays. Note that many common
access and Sto re data . std.algorithm array operations are subsets of more generic algorithms that work with arbitrary
PY And the “algorithms” and “ranges” ranges, so they are found in std.algorithm.
and are building blocks for CONAI
. std.container.array See std.container.* for an overview.
ComPUtatlon std.container.binaryheap
. d. i .dli
® The Standard Library (std) has common data structures o e e

and ability to work with data (json, csv, xml), compression _std.container.slist
(zip), networking (sockets, curl), etc.

https://dlang.ora/phobos/index.html

https://dlang.org/phobos/index.html

Hello DLang (1/2)

e Hereitis, the “Hello World”
program in D

O

You'll see some familiar
constructs in other languages
import brings in a ‘module’ a
library of code.

m prefixed with the ‘std’ means
this comes from the
standard library

m The standard library is
called ‘phobos’ in D.

You'll see ‘writeln’ for writing out
text (or we can use the fully
qualified name std.stdio.writeln)

std.stdio;

0o1d main(){

writeln(

std.stdio.writeln(

mike:1$ dmd hello.d -of=prog
mike:1$./prog

Hello Everyone!

Welcome to class!

Hello DLang (2/2)

Observe at the bottom, that D

is a compiled language
o This means we need to invoke the
dmd compiler

dmd - the compiler

hello.d - source file we want
to compile

-of=prog - Tells us that we
want the output binary to be
named ‘prog’

Iprog - runs our executable
(note this may be prog.exe
on windows)

std.stdio;

0o1d main(){

writeln()i

std.stdio.writeln(

mike:1$|dmd hello.d -of=prog
mike:1$|./prog

Hello Everyone!

Welcome to class!

Note: on modules

e imports do not have to have a
global scope, often times we’ll
prefer to have a scope local to
a function.

e More info:

(@)

https://tour.dlang.org/tour/en/basic

s/imports-and-modules

void main(){

std.stdio;

writeln(¥i

mike:1$ rdmd module.d
neat!

59

https://tour.dlang.org/tour/en/basics/imports-and-modules
https://tour.dlang.org/tour/en/basics/imports-and-modules

rdmd

Description

rdmd is a companion to the dmd compiler that simplifies the typical edit-compile-link-run or edit-make-run
cycle to a rapid edit-run cycle. Like make and other tools, rdmd uses the relative dates of the files involved to
minimize the amount of work necessary. Unlike make, rdmd tracks dependencies and freshness without re-
quiring additional information from the user.

rdmd introduction

std.stdio;
e Now I'm going to re-run the 1d matne
hello.d program again |
writeln(

o This time with a ‘shortcut’, the
rdmd
o This allows me to speed up my
edit-compile-run cycle
m rdmd is a smart tool to
help us iterate more
quickly when writing D
code

e (Note: You can also use: "
‘dmd -run hello.d)

std.stdio.writeln(

mike:1$ |rdmd hello.d
Hello Everyone!
elcome to class!

rdmd scripts std. stdio;

d main(){

e You can check out more here: writeln(
https://dlang.org/rdmd.html

o Having the rdmd tool allows us to

essentially use the D compiler like

ike:1$ chmod a+x script.d

a scripting language ike:1$./script.d
m See example to the right ['m a fast compiled language used
like a scripting -

Description

rdmd is a companion to the dmd compiler that simplifies the typical edit-compile-link-run or edit-make-run
cycle to a rapid edit-run cycle. Like make and other tools, rdmd uses the relative dates of the files involved to
minimize the amount of work necessary. Unlike make, rdmd tracks dependencies and freshness without re-
quiring additional information from the user.

https://dlang.org/rdmd.html

Basic Types - D gets the Defaults Right (1/2)

mike:1$ rdmd basic_types.d

0
e The size of variables is fixed SRt 0
regardless of platform. | mainOf]
o e.g.Anintis always 4 bytes ikt Y]
e \Variables are default initialized SRl R ;
o Insome languages (e.g. C or C++) N i
variables must be explicitly 4
initialized .
o D initializes everything mig}gg zg:gg .
m (You can explicitly leave writeln(ubyte.sizeof); 8

something uninitialized with el it il

=void however if you truly do sl il o el g

not want say a large buffer of writeln(int.sizeof);
data to be zero initialized) by sy e g)

writeln(long.sizeof);
writeln(ulong.sizeof);
writeln(f1l .sizeof);
writeln(double.sizeof);
writeln(real.sizeof);

Basic Types - D gets the Defaults Right (2/2)

e You can find the defaults and
properties here:

(@)

(@)

https://dlang.org/spec/property.html
To the right are some examples of
some of the things you can query --
see the documentation for more.

Properties for All Types
Property Description
Linit initializer
sizeof size in bytes
alignof alignment size
mangleof string representing the ‘mangled’ representation of the type
stringof string representing the source representation of the type

64

https://dlang.org/spec/property.html

Memory - D is a systems language (1/3)

e D has a garbage collector (gc) that std.stdio;
is on by default (it can be turned (Tl malnyL
Oﬁ)] , int[] DynamicallyAllocatedArray = nt[10];
o This means that we don’t have to (i: DynamlcallyAllocatedArray){
explicitly delete memory that we have writeln(1i);
allocated.

o Inthe example on the right, we
dynamically allocate an array of 10
integers

o Then | use a ‘foreach’ loop to display
them all.

o The garbage collector will periodically
run, and remove any memory that
cannot be reached for us.

Imike:1$ rdmd memory.d

0
0
0
0
0
0
0
0
0
0

Memory - D is a systems language (2/3)

e D does allow us to use pointers std.stdio;
as shown on line 7 - .
o 1d main(){
e We can use the ‘&’ operator to
get the address of a variable. int myInt;
o Observe the address printed out int* pointerTolnteger = &myInt;
below.

writeln(&mylInt);
writeln(pointerTolnteger);

}
"memory2.d" 15L, 162B written

mike:1$ rdmd memory2.d
7FFF617BEB70
7FFF617BEB70

Memory - D is a systems language (3/3)

. std;stdio;
e D pays extra attention to memory baarel el
vold arte saTe

ESEifEBt)/. string[] strings =

writeln(strings);
o You can add an @safe attribute after a '
function, and this will ensure that memory

safety bugs are avoided. '

o @system is the ‘default’ however -- so {‘ Unsate()
observe on line 9 we can manipulate i
memory.

m While this is the default,

m try changing @system to @safe on p=p+
line 9, you'll see the compiler give you
an error that this is not verified to be g el
safe code. UnSafe();

string[5];

67

(Aside)Explicit Memory Allocation (1/3)

e We can also use the core. stde. stdlibs
standard C libraries (libc) void main(){
malloc and free functionality
to allocate our own int* memory = (int*) (malloc(int.sizeof *).)4

memory.

o If you want to completely
disable the garbage collector,
that is also an option

e The pointis that D gives
you several options for how
to handle memory.

free(memory);

68

(Aside)Explicit Memory Allocation (/3)

7 core.stdc.sfdlib;

e Observe in this example, we can Sl By
create a ‘slice’ (line 8) and access void main(){
the memow more Conveniently int* memory = (int*)(mallo;(int.sizeof *));
o Note: When we write out the malloc’'d auto slice = c: (int[1)memory(0 .. 10];
memory that our slice also points to, findex, slement = slitell
observe that we have garbage values. writeln("[",index, ,element);
m So when using C libraries, we } 7
plgy py C’s rules (memory is not t reelmenony)s
initialized). }
m In this class, prefer to just use "malloc slice.d" 15L, 409B written
D’s gar.bage collector unless 1818482578
otherwise stated. 21877
m (Note: In D we can do: 0
auto[50] memory= void; if we 8
want uninitialized memory) 10

12
9

31
23

(Aside)Explicit Memory Allocation (3/3)

e Here's another idiomatic D Eare sk sulih;
S . STd10;
language improvement with I —
what’s called a scope O int* memory = (int*) (malloc(int.sizeof * 10));
guard. fre
o Notice at line 14-16, | can
create what is equivalent to a
try-catch-finally block. (e ;,i') ;
o Scope guards however (with free(memory);

‘exit’) will always execute, and :

is a bit cleaner in my opinion
with complicated control flow.

uto slice = (int[])memory[

(index, elemeht ; slice){
writeln(,index, ,element);

}

Avoiding Garbage Collection - @nogc

The @nogc attribute can mark a
function as something that will not

collect.

o You can effectively disable garbage
collection for your entire program, but
the attribute is transitive

o Meaning if you allocate (which writeln
does -- we need space for a string),
then you cannot use those functions.

With care @nogc can help give
you performance for allocations
when needed.

std.stdio;

void foo(){
(

writeln

1,10 All
mike:2$ rdmd nogc.d

nogc.d(13): “@nogc” function "D main® cannot
call non-@nogc function "nogc.foo"

71

(Aside) More on D’s Memory Allocation

Use For

e Here’s a list of articles for more on memory
allocation, in an order that would be reasonable to
read them.

e https://dlang.org/blog/the-gc-series/
o Aseries of several articles on the garbage collector (gc),
stack, heap, profiling, and more
o We’'ll talk about some of these topics throughout the course.

e Garbage Collection in the D Programming Language
o https://dlang.org/spec/garbage.html

e hitps://dlang.ora/blog/2017/06/16/life-in-the-fast-lane/
e DConf 2019 Day 1 Keynote: Allocating Memory with

the D Programming Language -- Walter Bright
o https://www.youtube.com/watch?v=_PB6Hdi4R7M

* smaller programs (like Scripts)
* parts of code that are rarely run

andling

* batch utilities

* where dev costs are higher than compute costs

72

https://dlang.org/blog/the-gc-series/
https://dlang.org/spec/garbage.html
https://dlang.org/blog/2017/06/16/life-in-the-fast-lane/
https://www.youtube.com/watch?v=_PB6Hdi4R7M

const

e D supports ‘const’ qualifier .
on variables. std.stdio;

o This means that you cannot | _
in the current scope change volid main(){
the value

e In general -- we like
making data ‘const’ to .
minimize state in our const 1nt const_int =
program if data is
read-only

Immutable - Data never ever changes

e immutable data in D is truly bt crdio

read-only
o This is even safer -- and important for
parallel programming.
m i.e. we like a guarantee that data _
cannot change. immutable int immutable_int =
e This becomes very important when

working with pointers
o (next slide)

1d main(){

74

std.stdio;

id main(){
Immutable data is safer oo
i i
Here’s an example showing that Frectively throu e
with immutable data, we get an W Lteln(2piats)
even stronger guarantee writeln(*pdata);
const is still good to use -- just N —
means we cannot reassign our
pointer
o The underlying data may change {mmutable datad=y?;
however. immutable int* immutablePData3 = &data3;
writeln(data3);

mike:1$ rdmd immutable_vs_const.d

Control Flow

o if/else/elseif supported in other
languages

e switch statement more
powerful than C and C++

o Can support ranges
m e.g.case0: .. case 5:
Can also switch on ‘strings’ as
well.
Can also switch on enums

std.stdio;

soid main(){
(:: || ==){
} (1==2 && 4==5){
}
{
}
|
nt value=4;
(value){
. W;iteln(:
' writeln(
'Writeln(
}
}

mike:1$ rdmd controlflow.d
value between 0 and 5 inclusive

Functions

D allows local functions (line 5
and 6) for further encapsulation
At lines 13 you can also create
anonymous (unnamed)
functions

Line 17 shows another way to
create a one line function
(lambda)

std.stdio;

void func(){
void localFunc(){
}
}
yid main(){
auto anonymousFunction = (int a, int b){
a +'b;
}.
[uto lambda = (int a, int b) => a +b; |
writeln(anonymousFunction(4,5));
writeln(lambda(4,5));
}

mike:1$ rdmd functions.d
9
9

std.stdio;

. . nt Add(int x, int y){
Higher Order Functions } Xy
i int Subtract(int x, int y){
e D supports the passing of X-y;
: . . }
functions using a nice syntax,
the function keyword
o Note: When wor.klng with int Perforing (int,int) fund, int a, int b){
classes/structs, if we want a func(a,b);
function pointer to a member }
function we use delegates to void main(){
capture state.
¢ result1l = Perform(&Subtract,5,2);
't result2 = Perform(&Add,2,5);
writeln(result1);
writeln(result2);
}

"higherorderfunctions.d" 25L, 531B written

mike:1$ rdmd higherorderfunctions.d
3
7

Universal Function Call Syntax and Chaining (1/2)

1
. . 2 td.stdio;
e Allows you to call free functions with St AL CEha:
[4
the ‘. SyntaX 5 void main(){
o edg. e

m func(param)) is called as
m param.func.
o d tour - uniform-function-call-syntax-ufcs

e Article by Walter Bright

o [archived link]

auto functionCall = map!(a=> a*2)([1,2,3]);
writeln(functionCall);

O 00

,,__'. ri'.
- O

12

)

R >~

auto ufcs = [1,2,3].map! (a=> a*2);
writeln(ufcs);

ike:1$ rdmd ufcs.d
[2, 4, 6]
[2, 4, 6]

https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://web.archive.org/web/20121218051921/https://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394

Universal Function Call Syntax and Chaining (2/2)

UFCS allows you to more
conveniently chain together

function calls
o Here’s an example of chaining
together several calls

Note: It can be useful to
space out the calls.

std.stdio;
std.string;

void main(){

string sentence =
writeln(strip(replace(toUpper(sentenée),

writeln(sentence.strip.toUpper.replace(

writeln(sentence.strip
.toUpper
.replace(
.strip

]oe WAS HERE
joe WAS HERE
joe WAS HERE

More on Functions

e D Supports more with functions:
o pure
o lazy
o memoization

81

pure functions [dlang tour on pure]

e Function purity is also an important part of

functional programming

o Astrongly pure function is one which has no side

effects (i.e. parameters are not modified.)
m The same input provides the same output

o We can also have ‘weakly pure’ functions which
have mutable parameters (parameters passed by
reference whether explicitly (with the ref
parameter) or implicity (e.g. a class or pointer)

e More on Pure: [Dlang Episode 68] D
L anquaqge - Functions - Part 15 of n - pure
functions

* Computes the power of a base
* with an exponent.
*
* Returns:
* Result of the power as an
* arbitrary-sized integer
1 o 4
11 BigInt bigPow(uint base, uint power) pure
BigInt result = 1;
foreach (_; 0 .. power)
result *= base;
return result;

1 import std.bigint : BigInt;

)

82

https://tour.dlang.org/tour/en/gems/functional-programming
https://www.youtube.com/watch?v=PAXHOEufVFM
https://www.youtube.com/watch?v=PAXHOEufVFM
https://www.youtube.com/watch?v=PAXHOEufVFM

std.stdio;

Type Deduction with auto

) sum(int a, 1int
a ¥+ b;

e D allows for type deduction with the
‘auto’ keyword
e For functions the return type can be

deduced using ‘auto’
o (arguments of functions however cannot
be auto, unless they are ‘auto ref’) writeln(sum(4,5));

e “almost always auto” - is the s LR
general rule (is fine if the type is
obvious, but | usually prefer explicit
types stil) ike:1$ rdmd auto.d

id main(){

auto i = 5;
writeln(5);

writeln((i));

.d" 17L, 253B written

(Aside) ‘auto’ std.stdio;

e Online 7 | have used ‘auto’ in D to MR _maln()1
1nt X
declare the type. auto px
e ‘auto’ is smart enough to deduce that o
we’re storing in address on the right writeln(x):
hand side, and that the type of ‘X’ is an writeln(*px);

int. writeln((px));
o Thus: typeid(px) is a int*
o (This code is equivalent to the previous slide)

mike:2$ rdmd pointers2.d
7
7
int*

Type Creation - typeof

e Making use of type deduction to

create new types with typeof
o This example ensures that
whatever type is deduced from i,
the variable ‘j’ will also be that type.

std.stdio;

hid main(){

l -

(1)]

writeln(

mike:1$ rdmd typeof.d
int

85

Function Templates

e Function template syntax allows you Std s Edin:
t rametriz r functions.
Opa _a © .eyou_ unctions quto AAA(T)(T a, T b){
o Line 4, ‘T’ is substituted for the type a+b:
o Atline 10 and line 14 the type ‘int’ and }

‘double’ respectively is substituted in.
e The notation again for choosing the
type is with the !’
o Other languages use a set of <>

m e.g. C++: std::vector<int>
m e.g. Java: List<String>

1d main(){

uto resultl = Add!(int)(1,

writeln(result1);

uto result2 = Add!(double)(
writeln(result2);

86

Template Constraints

e Atline 6 observe that we can further
add template constraints for what is

allowed

o Note: We've added the std.traits library
which lets us at compile-time check that
the types are basic types

e Template constraints are probably
something new, but D allows you to
write them to ensure code meets

requirements
o https://dlang.org/articles/constraints.html

o Template Constraints are like ‘concepts
in c++’

std.stdio;
std.traits;

ito Add(T)(T a, T b)
(isBasicType!(T))

a+b;
| main(){
resultl = Add!(int)(1,4);
writeln(result1);
to result2 = Add!(double)(

writeln(result2);

87

https://dlang.org/articles/constraints.html

Template Constraints - Fail

e This example fails as o e
strings are not a basic Juto A(TY(T 3, T b)

(isBasicType!(T))
type
o Strings are an immutable
array of characters

a+b;

m i.e. immutable charf] Talt:im . Gl
e Note: isBasicType writeIn(result1);

actually isn’t the best way o results - (TS

to check here, we’d rather writeln(result2)s

have ‘isAddable’

O 555363: ike:1$ rdmd function_templates2_fail.d

hftp.s:{/ d'rf}[”cf-o"Q/ articles/con r22?:32;”32?52555?255i‘élZ’éedaratiéﬁ"“)iiée#”iti”ci i
straints.ntm with ° string’

whose parameters have the following constraints:

isBasicType!T

not satisfied constraints are marked with *>°
Failed: ["/usr/bin/dmd", "-v", "-o-", "function_templates2_fail.d", "-I."]

https://dlang.org/articles/constraints.html
https://dlang.org/articles/constraints.html

Static Arrays (Fixed-sized arrays)

e Static Arrays are
declared with the type
and the size.

e Sometimes these are
also called ‘fixed-sized’

arrays.
o These arrays are stack
allocated.

o Static arrays size cannot
be changed -- they are
fixed-size...

N =

QW) _L_.)

)
o
O
9
@

lrstd.stdioj

int]

] ten integer array;

writeln(ten integer array.length);

89

Dynamic Arrays

e Dynamic Arrays
o Heap allocated with ‘new’
o Size can be queried with .length
as well
o Can be concatenated with ~
operator
m (We do not overload the
‘+’ operator)
e https://tour.dlang.org/tour/en/

basics/arrays
o More:
https://tastyminerals.qithub.io/ta

sty-blog/dlang/2020/03/22/multi
dimensional arrays in d.html

std.stdio;

oid main(){

DOONO U S WN =

int[] dynamic array;
dynamic_array ~= 5;
writeln(dynamic_array);

int[] dyanmic_array_initial_size_ie = new int[10];

dyanmic_array initial size 10 ~= 11;
writeln(dyanmic array initial size 10);

int[]J[] multidimensional dynamic array = new int[][](2,2);
writeln(multidimensional dynamic array);

ike:1$ rdmd dynamic array.d

[5]

[0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 11]
(o, o], [e, 0]]

https://tour.dlang.org/tour/en/basics/arrays
https://tour.dlang.org/tour/en/basics/arrays
https://tastyminerals.github.io/tasty-blog/dlang/2020/03/22/multidimensional_arrays_in_d.html
https://tastyminerals.github.io/tasty-blog/dlang/2020/03/22/multidimensional_arrays_in_d.html
https://tastyminerals.github.io/tasty-blog/dlang/2020/03/22/multidimensional_arrays_in_d.html

Associative Arrays (and sneak peak at alias)

std.stdio;

e Associative Arrays

o a.k.a dictionaries, hashmaps, hash tables
o array

e https://tour.dlang.org/tour/en/basics/arrays

oid main(){

tring[int] students;

students[1=
writeln(students);

ias key = string;
alias value = string;
valuel[key] animals;

animals|[]
animals|[]

mike:1$ rdmd associative array.d
[12345:"mike"]

Al i in animals){
writeln(
}

writeln(animals);

dog is here
["dog":"an animal that barks", "cat":"an animal that meows"]l-"

https://tour.dlang.org/tour/en/basics/arrays

DLang strings and charf]

e In DLang, strings are again std.stdio;
o alias string = immutable(char)][]; void main(){
m That means we cannot
change strings tring mike =
o If we want a string that we can writeln(mike[0]);
modify, just make it an array of
characters
m i.e. char[] mutable_string =
“Hello friends”;
o See nutablel0) = H';
https://tour.dlang.org/tour/en/basic writeln(mutable);

}

s/alias-strings

dup example https://dlang.org/library/object/dup.html

92

https://tour.dlang.org/tour/en/basics/alias-strings
https://tour.dlang.org/tour/en/basics/alias-strings
https://dlang.org/library/object/dup.html

std.stdio;

id main(){
. . int[] array = [1,2,3,4]
e Slices themselves point to already int[] slice = array[]
existing memory
slice[0] =

o ‘“aview into memory”

e \ery quick way to get a few into data writeln(array);

writeln(slice);
o Again -- use .dup if you want to initialize a
new array with its own copy of previous Geitelnty:
data
Can use $ as a shortcut for end of é'p‘;%]lcgy = array[0 .. 4].dup;
collection writeln(ar}ay);
https://tour.dlang.org/tour/en/basics/slices writeln(cpy);

Great article on slices

m https://dlang.org/articles/d-array-arti

cle.html mike:1$ rdmd slice.d

(50, 2, 3, 4]
(50, 2, 3, 4]

(50, 2, 3, 4]
[7, 2, 3, 4]

https://tour.dlang.org/tour/en/basics/slices
https://dlang.org/articles/d-array-article.html
https://dlang.org/articles/d-array-article.html

std.stdio;

void main(){

UDAWN R

Ranges

intl] are = [1,2,3.4,31;

oo Gt i =]

foreach(element; arr){
write(element,);:
}

e A very brief introduction into the

o]

idea of ‘ranges’ in the D 11 writeln();
Ianguage. 3 for‘eac%y reverse(element; arr){
o https://tour.dlang.org/tour/en/basics/ra) write(element,®,");
nges :2 writeln();

o C++ 20 similarly has ranges
m D however leans fully into
ranges, meaning you do not
see begin/end iterators in the }
standard library writeln();

foreach(element ; arr[arr.length-2 .. $]){
write(element, ¥

https://tour.dlang.org/tour/en/basics/ranges
https://tour.dlang.org/tour/en/basics/ranges

Multi-Paradigm

e D supports procedural

o 0O O O O O

Object Oriented
Functional
Generic
Multi-threaded
Parallel

etc.

95

Object-Oriented Programming Paradigm: structs

e structs are aggregate types, made
up of 1 or more other types

e structs are known as ‘value types’

o They are by default stack allocated

m (Can be heap allocated with ‘new’
however)

o They do not allow for inheritance
however

m (The type is final)

o This distinguishment can often be tricky
for new programmers, but it's a good
“design decision” that you have to make
up front when writing code.

std.stdio;

truct student{

string name;
int id;

9 void main(){
student mike = student(

auto michael = new student(

writeln(mike);
writeln(michael);
writeln(*michael);

mike:1$ rdmd struct.d
student("mike", 123)
7FA194DAA000
student("michael", 456)

24,61-64

Object-Oriented Programming Paradigm: Classes

e C(lasses are accessed solely by
references (i.e. they must be

dynamically allocated)

o They’re meant for dynamic
polymorphism.
o D s similar to Java in how it utilizes
classes for inheritance
m D supports single inheritance of
implementation
m D supports multiple inheritance
using interfaces

std.stdio;

1 class Student{

this(string name, int id){
mName = name;
mID = id;

}

string mName;
int mID;

5
6 void main(){

auto mike = new Student(
writeln(mike);
writeln(mike.mName);
writeln(mike.mID);

mike:1$ rdmd class.d
class.Student

mike

123

Struct versus classes

e In some languages there is no distinguishment, but in more modern

languages the distinguishment between structs and classes is important
o You decide up front if a type can be inherited from (i.e. by using a class)

98

Classes and Interfaces

e An interface in D provides a ‘blueprint’ that

classes must inherit from

o We cannot otherwise create an instance of ‘Animal
from the example on the right.

std.stdio;

Animal{
Walk();
Talk();
Eat();

Move(){
writeln(

}

Dog : Animal{
Walk(){ writeln(
Talk(){}
Eat(){}

main(){

Animal someAnimal = new Dog;
someAnimal.Move();
someAnimal.Walk();

Dog dog = Dog;
dog.Move();
dog.Walk();

mike:2$ rdmd interface.d
All animals have this function

abstract class (1/2)

e Note: In D we also have abstract

classes

o htitps://dlang.org/spec/class.html#abstract

o These are similar to interfaces, but you can
also add properties (i.e. member variables)

o Same rules as an interface however --
cannot instantiate a class marked as abstract
or with members that are abstract.

class C

{
abstract void f();
}
auto c = new C; error, C is abstract

class D : C {}

auto d = new D; error, D is abstract
class E = C
{

override void f() {}

}

auto e = new E;

abstract class A

{
}

auto a = new A; error, A is abstract

class B : A {}

auto b = new B;

https://dlang.org/spec/class.html#abstract

abstract class (2/2)

Here’s an example

o Think of ‘abstract classes’ as a way to
provide a more powerful interface, if
you think there is some default
functionality that is needed in a class.
(Note: Another way to achieve this in
an Interface is by providing final’
functions, but you still cannot have any
‘state’ in in interface (i.e. no member
variables)

, 5 MyClass{
- value;

mustBeOverriden();

id someFunction(){

std.stdio;
writeln()3
Implementation : MyClass{

id mustBeOverriden(){

std.stdio;
writeln()5
main(){
impl = new Implementation;

impl.someFunction();
impl.mustBeOverriden();

Code Analysis - Loop versus ‘map’

std.stdio;
std.algorithm;
std.range;

e Let's take a look at this piece of

code
o See if you can figure out the results that
will be written out 6 void main(){
o map again may be new for folks who
haven’t done functional programming int[] numbers = [1,2,3];
m Butl assure you -- the ‘Loop style’ for(int i=0; i < numbers.length; i++){
and ‘Functional-style’ will generate s numbers[i]=numbers[i]+1;
the same result. }

_ . writeln(numbers);
e (Note: You could write this as a
line-line function:

DB WN =

)

O 00

-
O

auto range = iota(1,4,1)
o dota(1,4,1).map!(a=>a+1).writeln; [l auto result = range.map!
writeln(result);

;
(a=>a+1);

Code Analysis - Loop versus filter’

std.stdio;
std.algorithm;
std.string;

e |et’s take a look at this one
-- filter

o Again lines 10-17 represents
one experiment
o Lines 21-23 represent the
'to words = [;

functional style. 11 int coollLangauges = 0;
i element ; words){

element==){
coolLangauges++;

UhE WN =

void main(){

(@)]

0 ~

}
}

writeln(,coollLangauges);

to words2 [; ; ; ;] [
auto result = words.filter!(a=> a.indexOf() >=0).count;
writeln(,result);

Code Analysis - Loop versus ‘reduce’

std.stdio;
std.algorithm;
std.string;

e Q(bserve again the
same experiment --

reduce
o Which code has fewer

O E WNRE

void main(){

~

9 : valuesl = [7,5,8,2,4,1,3];
branches? 0 typeof(values1[0]) minValue = valuesl[0];
o Which code has fewer
decisions? for(int i=0; i < valuesl.length; i++){

if(valuesl[i] < minValue){
minValue = valuesl[i];

}
}
writeln(minValue);

to values2 = [7,5,8,2,4,1,3];
result = values2.reduce'!min;

writeln(result);

D Language - Templates

Types

e D is a statically typed language
o This means that at compile-time,
symbols (i.e. variables and functions)
store data in a format (i.e. integer, float,
etc.) that does not change.

e \What this means is, we often have
to write different variations of

functions to handle different inputs.

o Observe the two different ‘add’ functions
(addi and addf) to the right with different
types for the parameters.

1 // noTemplate.d
std.stdio;

int addi(int a, int b){
return a + b;
}

float addf(float a, float b){
return a + b;

void main(){
auto resulti = addi(5,4);
auto resultf = addf(7.0f,5.0f);

writeln(resulti, " which is type : ", (resulti));
writeln(resultf, " which is type : ", (resultf));
}
"noTemplate.d" 18L, 333C written

mike@Michaels—MacBook—-Air 10 % rdmd noTemplate.d
9 which is type : int
12 which is type : float

106

Function Overloads (1/2)

1 // overloads.d

e Note that languages like D (and std.stdio;
C++, Java) support function e e
overloading, such that every ’
: (:){
function does not have to be e
uniquely named. o
volid main
o This means that we can just name the auto resulti = add(5,4);
function ‘add’ auto resultf = add(7.0f,5.0f);
o The compiler is smart enough to deduce Tt i R el
from the function signature (the name + ¥
i] "overloads.d" 18L, 328C written
parameter types) which version of the
. mike@Michaels-MacBook—-Air 10 % rdmd overloads.d
add function to call. o which is type : int

12 which is type : float

107

Also observe in this example
though, that it may become
‘exhaustive’ to type out every

particular combination
o This is where templates can be useful
o We will however find out, that templates
are even more useful of a mechanism
for meta-programming

1 // overloads.d
std.stdio;

int add(int a, int
return a + b;

}

float add(float a, float b){
return a + b;

void main(){
auto resulti = add(5,4);
auto resultf = add(7.0f,5.0f);

writeln(resulti, " which is type : ", (resulti));
writeln(resultf, " which is type : ", (resultf));

}
"overloads.d" 18L, 328C written

mike@Michaels—MacBook-Air 10 % rdmd overloads.d
9 which is type : int
12 which is type : float

108

Templates - Function Template

e Templates are a mechanism for
generating code.

O

One of the main uses of templates is for
enabling generic programming
paradigm.

e Observe the code example on the
right for writing a ‘generic’ or
‘templated’ version of add.

O

The first template parameter (T) after add
is the type that will be replaced

T is also the return type.

Then when using our add function we
use the ! symbol to indicate the start of
the template parameter we are supplying.

1 // function_template.d
std.stdio;

2
3

4 T add(T)(T a, T b){
return a + b;

}

5
6
7
8
9

18 }

auto
auto
auto
auto

void main(){

resulti add!
resultf
resultl

resultd

add!
add!

writeln(resulti,
writeln(resultf,
writeln(resultl,
writeln(resultd,

"function_template.d" 18L,

int(5,4);

add!float(7.0f,5.0f);

long(72,51);
double(7.2,5.2);

which is type :
which is type :

which is type :
which is type :

489C written

(resulti));
(resultf));
(resultl));
(resultd));

mike@Michaels—MacBook-Air 10 % rdmd function_template.d
9 which is type : int

12 which is type : float
123 which is type : long
12.4 which is type : double

109

Multiple template parameters

eid(resultfi)
ypeid(resultif)

);
)i

cannot implicitly convert expression "a + cast(float
template instance " function_template2.add! (float, in

"function template2.d", "-I."]

e Note, you can provide as S Brdin;
many template parameters e
as is reasonable -- in this } i
case | show two e ot e T
o One issue however, is for GFEELH (FESHUERL,
figuring out the return type. WEATELnLFESOLLLL,
o Should it be T1 or T2?
m Inthis case, it can be : :

. . mike:10$ rdmd function template2.d
neither as D avoids function_template2.d(5): Err
implicitly converting the f:;cgioﬁzggm;){;::;:dg);1nt
types. Ean:gm”ﬂzmmsﬁlgg "oy", "-0-",

m See next slide for
solution

110

Deducing the return type with ‘auto’

1 // function_template_improved.d

e D allows for us to use ‘auto’ to std.stdio;
deduce the return type. ko ada(i T 2, T2)
o This is probably the cleanest way to do y
things if you have an operation (i.e. *+') VOidaTiiniiiultif = add! (int, float)(5,4.01f);
that may mix types. auto resultff = add!(float,float)(5.1,4.2f);

auto resultii = add!(int,int)(7,5);

writeln(resultif, " which is type : ", (resultif));
writeln(resultff, " which is type : (resultff));
writeln(resultii, " which is type : (resultii));

~

"function_template_improved.d" 16L, 438C written

mike@Michaels-MacBook—-Air 10 % rdmd function_template_improved.d
9.01 which is type : float

9.3 which is type : float

12 which is type : int

111

Template Specialization - Template Constraints

e One option is to provide a : i Eratee:
template constraint ,
o This is also known as a ‘concept’ in Lskddabla(t) = _tratts hund FiES3)5
Modern C++ 11 ?d((jgllxc)jggg‘(tg(‘?’i)Té&bzsAddable!(T2))
e The idea is that we have checks
on a function to ensure that some RS SNIING_. R
rU|e(S) IS belng f0||owed 2 writeln(resultss, , typeid(resultss));
o We can have as many constraints as 17,4 Top
we |”(€3 mike:10$ rdmd template_constraint.d
. t?nplate_?onSYraint.d(17): template insténce"tenplate_constraint adq st
PY NOte: We)” |00k at traItS ShOI"ﬂy. rtzgthsF;;ng stgz:; not match template declaration "add(T1, T2)(T1 a, T2 b

T2 string’
whose parameters have the following constraints:

isAddable'T1
isAddable!T2

not satisfied constraints are marked with ">°
Failed: ["/usr/bin/dmd", "-v", "-o0-", "template_constraint.d", "-I."]

Template Specialization - Specialization

std.stdio;

e Observe that in this example we i St traite;
‘Specialize’ the temp|ate with 1 or all 5 auto add(T1,T2)(T1 a, T2 b)

of the arguments
o This selects the best match, and we can
implement the body of hte code as
appropriate
o This time the specialization uses the
correct concatenation operation

a + b;

add(T1: ing, . string)(T1 a, T2 b)
a ~ b;
main(){
0 resultss = add!(,st ,)s

resultii = add!(

writeln(resultss, 5 & d(resultss));
writeln(resultii, , typeid(resultii));

mike:10$ rdmd template_specialization.d
mikeshah which is type : immutable(char)[]
3 which is type : int

Templates for structs and classes

e Data structures can also be templated
o This is in fact one of the best use cases of

templates in my opinion, for making containers (i.e.

data structures) that can store any type of data.

“t DataStructure(T){
T[] data;

1 main(){

std.stdio;
DataStructure!q
ds.data = [1,2,3,

writeln(ds.data);

Generated Template Code

e It's useful to explore the compiler and
observe that a template is actually

5 struct DataStructure(T){
generating code for each instantiation. |
o For example, we have an explicit : | RO
‘DataStructurelint’ instantiation, where you 1€ std.stdio;
can see that the templated data is in fact 12 DataStructure!int ds;
‘int[]’ ' ds.data = [1,2,3,4,5,6];
m (i.e. the substitutions are performed
16 writeln(ds.data);
for us based on the template "struct_template.d" 17L, 281B written
arguments)

} DataStructure!int
5 struct DataStructure

{
}

int[] data;

t DataStructure(T){

Mixin ¢ © 101 data;

e The conversation around generating
code starts to get interesting with the

idea of a ‘mixin’ 11 F
e A '‘mixin’is literally just a piece of 3
legal D code that will be replaced 14 void main(){ .
when you compile. Sirastates
o Observe the example to the right DataStructure!int ds;

o You might be wondering why exactly we
would use what is on the right, and we
probably would not in this fashion --
however the ability to mixin strings at
compile-time is powerful with generative
capabilities.

dS'data = [2 2 2 2 2];

ds.PrintData();

"mixin_example.d" 22L, 317B written

mike:10$ rdmd mixin_example.d
datasy [1; 2,;:3; 4,5, 6]

Mixin and import

1 // DataStructure.txt

e With mixin’s you can v
actually read in code at : '

mixin("void PrintData(){ main(){
H H { import std.stdio; 7 std.stdio;
compile-time from another uriteln(\"data: \", this.dsta);
. D o) DataStructure!
10) 1
flle | 11 ds.data = [

o Note: On the example, that 15 ds.printbata();
we provide with ‘-J’ a path '
(in this case a ‘.’) for where
to search for import

| T B R O L)

directories.
m It's probably best to
have a dedicated "DataStructure.txt” [New] 11L, 199B written
directory for imports if
. mike:10S rdmd mixin_example2.d
you use them th|S nixin_example2.d(3): need *-3° switch to import text file ‘DataStructure.txt’
Failed: ["/usr/bin/dmd", "-v", "-0-", "mixin_example2.d", "-I."]
Way nike:10$ rdmd -J. mixin_example2.d

data: [1, 2, 3, 4, 5, 6]

117

Mixin template and compile-time code generation (1/2)

e Here's a more powerful use s SomeType{
28 int IntField;
case of templates and e Vost Flostrieids
MIXINS. 31 ixin GenerateGetterSetter!(SomeType,
o Observe in this example that | 32 }
do not define ‘getter’ and % Ratne)g
‘setter’ member functions 35 std.stdio;
anywhere. | SORETYE S
o But how am | using them?
m The secret lies in the 39 S-Setgt'sti?d{dz;
s.se oatrie
‘GenerateGetterSetter’ g
mixin template. writeln(,S.getIntField());

writeln(,S.getFloatField());

118

nlate GenerateGetterSetter(T, bool Getter=
std.stdio;
std.traits;
std.range;

std.meta;

ias myFleldTypes = AllasSeq'(Flelds'T),
i (ldX member FleldNameTuple'T M

if(Getter == M
ixin(myFieldTypes[idx].stringof~ ~member~ ~member ~

if(Setter == M
~member~ ~myFieldTypes[idx].stringof~ ~member~

This snippet generates how to use various compile-time features of dlang to generate code.
The std.traits library is used for ‘introspection’ to figure out the field names of a type

o Line 13 creates an aliasSeq (i.e. tuple) for the Fields (from std.traits) of a given type

o Then at line 14 we iterate through every field, and effectively write a new function.

o The mixin template (line 5) itself is paramertized for whether to generate getter or setters.

https://dlang.org/library/std/meta/alias_seq.html
https://dlang.org/library/std/traits/fields.html

Full example

Same as previous
slides, but all code
on one slide

GenerateGetterSetter (T, L Getter= " Setter=

std.stdio;
std.traits;
std.range;

std.meta;

myFieldTypes = AliasSeq!(Fields!T);
f (idx, member; FieldNameTuple!T M

if(Getter == M
ixin(myFieldTypes[idx].stringof~ ~member~
}
f(Setter == M
ixin(~member~"("~myFieldTypes[idx].stringof~
}
}
t SomeType{
IntField;
- FloatField;
GenerateGetterSetter!(SomeType, -)i
main(){
std.stdio;

SomeType s;

s.setIntField(5);
s.setFloatField()i

writeln(,S.getIntField());
writeln(,S.getFloatField());

A

~member ~) I

~member~ b S

(Aside) What's the point of this ‘meta-programming’

e Generic programming and generative programming paradigms can be very

powerful
o Often you are thinking about how to gather information at compile-time with some ‘std.traits’
o The point is that you can generate lots of code:
m Sometimes that is boilerplate code that may be tedious or error-prone to type
e i.e. We probably could add various attributes like ‘pure’ to our generated code to
make it even safer
o (Note: however, most templated code in D does infer those traits
automatically)
e Generative code can also be quite useful in the sense that in an evolving
codebase, | don’t have to constantly manage many things.
o In our previous example, | can simply just add and remove fields and get
getter/setter functions for free without thinking about it.

121

Other things in DLang

Compile-Time Features

e Full string manipulation capabilities
at compile-time
o (concatenation, indexing, selecting a
substring, iterating, comparison....)

e WEe'll talk more about the various
features like compile-time
function evaluation (CTFE) as
needed.

Compile Time Function @
Evaluation (CTFE)

CTFE is a mechanism which allows the compiler to execute functions at
compile time. There is no special set of the D language necessary to use this
feature - whenever a function just depends on compile time known values
the D compiler might decide to interpret it during compilation.

// result will be calculated at compile
// time. Check the machine code, it won't
// contain a function call!

static val = sqrt(50);

https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

123

https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

Threading and Safety

e \When it comes to threading
o D offers some memory safety when it comes to using
threads
m “ Memory is thread-private by default, shared on
demand.” [Alexandrescu]
o D otherwise has std.concurrency, which can be seen
as similar to #include <thread>
m Message passing is also built-in however to
allow the ‘send’ing and ‘receiving’ of messages
from objects.

33 {

52 }

)8 The thread worker main

9 function which gets its parent id
0 passed as argument.

31 *x/

2 void worker(Tid parentId)

bool canceled = false;
writeln("Starting ", thisTid, "...");

while (!canceled) {
receive(
(NumberMessage m) {
writeln("Received int: ", m.number);
}l
(string text) {
writeln("Received string: ", text);
o
(CancelMessage m) {
writeln("Stopping ", thisTid, "...");
send(parentId, CancelAckMessage());
canceled = true;
}
);
+

https://tour.dlang.org/tour/en/multithreading/message-passing

124

http://web.archive.org/web/20141217171333/http://www.drdobbs.com/article/print?articleId=217801225&siteSectionName=parallel
https://tour.dlang.org/tour/en/multithreading/message-passing

SafeD

e SafeD is a subset of the D language that focuses on
eliminating memory corruption possibilities
o It’s still evolving, but again, D allows you to program in a safe
way.
o https://dlang.org/articles/safed.html

e There are *whispers® of a safe or certified D
compiler -- as | learn more publically | can share.

125

https://dlang.org/articles/safed.html

Yet more to cover!

Stack and Heap

Avoiding Garbage Collection and the tradeoffs (@nogc)
Ranges and iterators

Emphasis on compile-time versus run-time

assertions and unit testing

casting data

scope and safety of writing code

interfaces

Inheritance in classes example

structure of a program with dub and other build systems

126

3. C++ and DLang as they compliment each other

127

3. C++ and DLang as they compliment each other (From my perspective)

128

C++ and DLang

e In a similar way that Modern C++ has evolved greatly since
C++98, DLang has also been evolving and growing since it

was first created in 2001 [wiki]

o Learning both languages in their whole and in isolation to achieve
mastery | have found difficult -- thus why | have spent a great deal of
time learning these two languages side-by-side (Or rather -- picking up
D after many years of C++).

D programming language

Paradigm

Designed by

Developer

First appeared

Stable release

Multi-paradigm: functional,
imperative, object-oriented
Walter Bright, Andrei
Alexandrescu (since 2007)
D Language Foundation

8 December 2001; 22
years agol']

2.108.012 #' / 1 April 2024;
12 days ago

Typing discipline Inferred, static, strong

0s

License

Filename
extensions

Website

FreeBSD, Linux, macOS,
Windows

Boost!3l415]

del7l

dlang.org 2!

Major implementations

DMD 2 (reference implementation), GCC 2,

GDC 2,

LDC &, SDC

Influenced by

BASIC,18 C, C++, C#, Eiffel,[®! Java, Python

Influenced

Genie, MiniD, Qore, Swift,[1% Vala, C++11,
C++14, C++17, C++20, Go, C#, and others.

¥ D Programming at Wikibooks

C++: How C++ Improved my DLang - Performance Minded

Having worked in C++, perhaps one
of the big advantages is the ability to

think as a ‘systems programmer’

o C++ has perhaps set me up to always be a
‘'systems’ thinker.

o Aconcrete example is that it is very
common for me to try examples on
compiler explorer, and review the
generated assembly.

C++ makes me wear my performance
hat!

0 ~NO OB

i |
12
13
14
15
16
17
18
19

// Function declaration and

// definition for 'add'

int add(int a, int b){
return a+b;

}

// Entry point to program
int main(){

// One callsite of 'add'
int result = add(7,2);

below

std: :printf("result:%d\n", result);

return 0;

130

DLang: How DLang Improved my C++ - Security Minded

e |n C++, memory is not initialized by
default

o C++ Core Guideline ‘Always initialize an
object’ -- thus provides what is the default
behavior in D (to always initialize values)

m https://isocpp.qgithub.io/CppCoreGuidelin
es/CppCoreGuidelines#es20-always-initi

Exception If you are declaring an object that is just about to be initialized from input,
initializing it would cause a double initialization. However, beware that this might leave
uninitialized data beyond the input — and that has been a fertile source of errors and
security breaches:

constexpr int max = 8 * 1024;
int buf[max]; // OK, but suspicious: uninitialized
f.read(buf, max);

alize-an-object
m (Top-right image) shows the exception to
this rule if you have some buffer that will
be immediately filled
m In DLang, we can use ‘=void’ to leave
memory uninitialized
e Similar proposals (bottom-right)
have showed up in C++ to change
the default behavior.

P2723R1
Zero-initialize objects of automatic storage

duration
Published Proposal, 2023-01-15

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html

131

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html

C++: How C++ Improved my DLang - C Interop

C++ naturally interops with the C
programming language
o Working with and interfacing with C libraries
is something most C++ programmers do.
o So | understood DLang’s decision to use the
same ABl as C
m Additionally, | understand the value of
‘importC’ -- which is a compiler for C,
built into the D compiler.
e https://dlang.org/spec/importc.htm

I
m Interfacing to C in D is otherwise
relatively trivial
e https://dlang.org/spec/interfaceTo
C.html

i
i
v

{

}

C function in file functions.c:

int square(int i)

return i * i;

}

1. D program in file demo. d:

mport std.stdio;
mport functions;
oid main()

int i = 7;

writefln("The square of %s is %s", i, square(i));

Compile and run:

dmd demo.d functions.c
./demo

The square of 7 is 49

132

https://dlang.org/spec/importc.html
https://dlang.org/spec/importc.html
https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/interfaceToC.html

C++: How C++ Improved my DLang - std::vector

e C++ knowledge of std::vector applies to dlang’s built-in dynamic array
o In D we simply use ‘int[] myIntArray;’ to create a dynamic array.
m However -- understanding the std::vector allocation means we may want to avoid the
expense of copying when we resize.
o e.g. Thus, in dlang .length can be set to change the size

133

C++: How C++ Improved my DLang - Trust the STL
e C++98 through 26 has had a vast amount of Algorithms library
9 Execution policies (C++17)
documentation for the STL Constrained algorithms (C++20)
. . Numerics library
o To new programmers -- learning to use #include Common math functions
i i i ’ Mathematical special functions (C++17)
<algorithm> in C++ is probably where you'll get the Mathcmatoal cotants (o)
most growth from the C++ language -- at least to start Basic linear algebra algorithms (C++26)
as a programmer once learning the basics Numeric algorithms :
. . . . Pseudo-random number generation
e Leaning into the STL in C++, made it easy for Floating-point environment (C++11)
. , . complex — valarray
me to lean into DLang’s standard library

(PhObOS) and use it https://en.cppreference.com/w/

134

https://en.cppreference.com/w/

DLang: How DLang Improved my C++ - Trust Phobos Library

e D has a larger standard library

o Networking (std.sockets)

o Curl

o sql

o json

o zip

o simd

o memory mapped files -- https://dlang.org/phobos/std_mmfile.html
o etc.

b

O

elieve we need some form of these in the C++ STL
In D it makes it very easy to create at least the first prototype of tools with these libraries
available.

135

https://dlang.org/phobos/std_mmfile.html

DLang: How DLang Improved my C++ - Slices

e D’s uses effectively slices (i.e. fat pointers) to access data
o Arrays thus have a ‘size’ and a ‘length’ -- similar to ‘std::span’ and ‘std::string_view’ in C++
o Slices are non-owning (we reference the array)
m Slices are an ‘alias’ for a part of an array, and do not trigger dynamic memory allocation.
o Having grown comfortable with D -- it becomes difficult to no use span and string_view in C++

e Read more on the design
o hitps://digitalmars.com/articles/C-biggest-mistake.html (idea of ‘fat pointers’)
o https://dlang.org/articles/d-array-article.html (slices)

136

https://digitalmars.com/articles/C-biggest-mistake.html
https://dlang.org/articles/d-array-article.html

DLang: How DLang Improved my C++ - struct vs class

e In C++ we carry the legacy of the ‘C’ struct
e In D we make the delineation that a struct is a ‘monomorphic type’ (i.e. no

polymorphism), and a value type by default
o | treat my C++ ‘structs’ the same way.
m Thus, in C++ | use no inheritance for structs (mostly treating them as plain-old datatypes
(POD))
o | find this is a helpful ‘signal’ to the design and architecture of my codebase.

137

DLang: How DLang Improved my C++ - Ranges

e Dlang uses ranges by default

o To be honest -- one of the first things this did was
make me less scared of writing iterators in C++
m i.e. |t was easy to digest in DLang writing an
‘empty’, ‘front’, and ‘popFront’ function(), that |
understood the same idea in C++
o Ranges also made me understand the benefits of
composition, infinite ranges, and being able to
evaluate algorithms lazily
m One level of abstraction higher than iterators,
allows for some additional safety (i.e. harder to
provide a pair of wrong iterators -- still some risk
of invalidation however)

{

}

struct FibonacciRange

// States of the Fibonacci generator
inta=1, b =1;

// The fibonacci range never ends
enum empty = false;

// Peek at the first element
int front() const @property
{

return a;

}

// Remove the first element
void popFront()

{
auto t = a;
a=b;
b=1t+b;
}

https://tour.dlang.ora/tour/en/basics/ranges

138

https://tour.dlang.org/tour/en/basics/ranges

DLang: How DLang Improved my C++ - UFCS

e Universal Function Call Syntax (UFCS)

o This is a feature available in many languages besides D
o When you get use to UFCS, you start thinking more so about writing ‘pure’ functions that
compose.
m ‘pure’ functions are more likely to be able to evaluate at compile-time
m | *think* UFCS itself is better reminding me to write functions that have one job.
o In C++ we utilize the overloads of the pipe operator to write more composable code (or
otherwise use std::ranges)
m An Overview of Standard Ranges - Tristan Brindle - CppCon 2019
m https://youtu.be/SYLgG7Q5Zws?t=3335

139

https://youtu.be/SYLgG7Q5Zws?t=3335

DLang: How DLang Improved my C++ - Mixins

e In DLang, mixins and mixin 27 SomeType{
28 int IntField;
templates are very powerful : loat FloatField;
features
32}

o Asimple ‘mixin(import(“some_file”)’ is a ,
34 V¢ main(){
useful way to embed data at 5 std.stdio;
compile-time. :
o There are ways to do this in C++, but | _
. . 36 s.setIntField(:);
ultimately hope we get an #embed like s.setFloatField(
in C23 .

SomeType s;

writeln(,S.getIntField());
writeln(,S.getFloatField());

140

DLang: How DLang Improved my C++ - The Defaults

e Covered earlier, but D fixes many defaults that C++ inherited from C
e |Initialization of values

e And several other small quirks --
o https://dlang.org/blog/the-d-and-c-series/
o https://dlang.org/articles/cpptod.html
o int* x,y; // in D produces two pointers to integers
o int* x,y; // in C produces x as type int* and y as type int.
e Overall, | just try to do what (I consider) the right defaults are in my D code in

my C++ code.

141

https://dlang.org/blog/the-d-and-c-series/
https://dlang.org/articles/cpptod.html

DLang: How DLang Improved my C++ - Contracts

e D has ‘in’ (pre) and ‘out’ (post) conditions
o https://dlang.org/spec/contracts.html
o Nice to understand how these are used in debug build for checking conditions
o Also keeps code nice and clean for my assertions

e See ACCU 2024 talk later today by Timur on contracts

o | think this will help me with whatever is coming in C++ 26 (I'll tell you in exactly 3.5 hours)

142

https://dlang.org/spec/contracts.html

Other “little things”

std.stdio;

e Sometimes learning a simpler syntax helps make Std. traits;
scary concepts or keywords make sense
o InDlang ‘typeof’is like ‘decltype’ SRAERIG Y ireit B rtios
o In DLang ‘template constraint’ is like ‘concept’ (‘a type system R TS

(isAddable!(T1) && isAddable!(T2))

for templates’)
m C++ Paper
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/

main(){
2005/n18860df : resultss = add!(o));
o Delegates in the D programming language carry e S
state with them when passing functions around 17,4 Top
(thus maklng them fIrSt-CIaSS CltlzenS, VerSUS a :::;;22_;2::t::TEEE?i;;?StraintA:emplate instance “template_constraint.add!(st
. . . . ring, string)’ does not match template declaration "add(T1, T2)(Ti a, T2 b)"
function pointer which is not) wih T3 = exrimg
. |mp|ementing “functors’ in C++ and eventua”y whose parameters have the following constraints:
understanding the connection with lambda’s lowering R ol
to functors was useful for wrapping my head around a | e T S s
‘delegate, Failed: ["/usr/bin/dmd", "-v", "-0-", "template_constraint.d", "-I."]

143

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1886.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1886.pdf

Other “big things” - Dlang and GC

e People are afraid of Garbage Collection (2 Jwiiition

I'm curious to learn more about unreal engines garbage collector from
But you get memory Safety eﬁeCtively for free. anyone who has experience (unrealcommunity.w llec...). How
often does it cause a problem? Do Unreal developers actively try to avoid

Allocation is just as fast as with ‘new’ or ‘malloc’ it? Do folks know their is a collector their for UObject?
#Hcpp

@)

O

m The scan/pause is the part that probably
needs work on the allocator.
You don’t have to use the garbage collector (as Garbage Collection | Unreal Engine Community Wiki
previously shown)
It looks like high powered C++ game engines
have portions that are collected
m Maybe someone can respond to my
tweet (Is it a GC, reference counted,
arena -- help me if you know!)
See more on dlang garbage collection:
https://dlang.org/blog/the-gc-series/

https://twitter.com/MichaelShah/status/1736695501259415873

144

https://dlang.org/blog/the-gc-series/
https://twitter.com/MichaelShah/status/1736695501259415873

Other “big things” - Dlang and Modules

e As soon as modules are fully available in most C++ compilers -- | will use

them
o D’s compilation is very fast, and | believe modules have one part to do with that (the language
itself, and the ability to concurrently parse it is the other)

145

Other “big things” - constexpr

e In C++ the more ‘constexpr’ stuff the
better

(@)

In DLang, The Compile Time Function
Execution (CTFE) (Shown to the right) means
that D pretty much tries to run everything it can
at compile-time

m Again -- this is probably the right default

Compile-time code is runtime code

It's true. There are no hurdles to jump over to get things running at compile

time in D. Any compile-time function is also a runtime function and can b
executed in either context. However, not all runtime functions qualify for
CTFE (Compile-Time Function Evaluation).

The fundamental requirements for CTFE eligibility are that a function must
be portable, free of side effects, contain no inline assembly, and the source

code must be available. Beyond that, the only thing deciding whether a
function is evaluated during compilation vs. at run time is the context in

which it's called.

The CTFE Documentation includes the following statement:

In order to be executed at compile time, the function must appear in a
context where it must be so executed...

e

146

Other “big things” - unit testing

e Dlang has built-in unittest blocks -- the fact

that they’re there means they get used
o Very low friction
o Animportant lesson that sometimes it's worth
adding the feature, even if it's not perfect
e We'll learn more about testing on Friday at

this conference :)

The Data Abstraction Think Parallel

Talk

11:00 Impre

Bryce Adelstein

Kevlin Henney Lelbach

Thinking
Dvir Yitzchaki
Phil Nash

Mathieu Ropert James Pascoe

// Block for my function
unittest
{
assert(myAbs(-1) == 1);
assert(myAbs(1l) == 1);

https://tour.dlang.org/tour/en/gems/unittesting

147

https://tour.dlang.org/tour/en/gems/unittesting

Other “big things” - ecosystem

e DLang has built-in package manager, profiler, and code-coverage (and can
utilize some of the static analyzers in gcc/ldc2)

e (C++ has a vast ecosystem, but no default

o Learning from Dlang -- For C++ | have opted to pick popular tools (e.g. cmake, perf) and
consider them my default for C++

148

Learning More About the D Language

More on Getting Help in D

e Usually ‘dlang keyword’ yields a result on the dlang.org homepage that |

need.
dlang string X $ @ Q
Q Al &) images & News [videos < Shopping { More Tools

About 1,580,000,000 results (0.64 seconds)

https://dlang.org > phobos > std_string
std.string - D Programming Language

A D-style array of char, wchar or dchar referencing the same string. The returned array will retain

the same type qualifiers as the input. Important Note: The ...

You've visited this page many times. Last visit: 12/14/22 150

The D language tour

D‘ DLang Tour Welcomev D'sBasicsv D'sGemsv Multithreadingv Vibedv Dby Examples~ DUB package:
. . .
e Nice set of online tutorials BT - I
Imports and modules Besic types ® o
Memory void main()
i 214
th at yo u Ca n WO rk th ro u g h One of D's core design decision was to be consistent and avoid corner M import std.stdio;
in the language. This is called turtles all the way down. One good exa Cautrol tlow C // or import std.stdio : wri teln;
1 h for this consistency are imports. Functions — 5 writeln("Hello, World!");
In One Our Structs |}
Imports i
Slices

o Found directly on the D
For a simple hello world program in D, import s are needed. The impo
Ia n g u ag e We bS I te u n d e r functions and types from the given module available. Loops

Foreach

Alias & Strings

‘L ea rn’ The turtles start falling down Ranges
Associative Arrays

An import statement does not need to appear at the top of a source filgiie e ally within

functions or any other scope. In the following chapters you will see thg all concepts in

D. The language doesn't impose arbitrary restrictions on you.

Interfaces
Templates

Delegates

Selective imports

Exceptions

Further Reading

The standard library, called Phobos, is located under the package std erenced through

https://tour.dlanqg.org/

151

https://tour.dlang.org/

Understanding D: [From C to D] and [C++ to D]

e Forthose who have done some C and C++ programming, D should feel very

familiar
o I'd also suggest that folks who have used Java, may find D with just as rich of libraries, but a
much more clean syntax.

e Useful guides

o CtoD
m https://dlang.org/articles/ctod.html
o C++toD

m https://dlang.org/articles/cpptod.html

152

https://dlang.org/articles/ctod.html
https://dlang.org/articles/cpptod.html

More Resources for Learning D

| would start with these two books

1. Programming in D by Ali Cehreli
a. Freely available http://ddili.org/

2. Learning D by Michael Parker

" S 5 8
MR WML

Any other books you find on D are also very Learning D

good -- folks in the D community write books
out of passion!

[=]
=3
i
5
St
&=

The online forums and discord are otherwise
very active

153

http://ddili.org/

YouTube - DLang

[Episode 0] | Series Teaser = Bk Videos)) EShee

m a t r l X 4 p y episoce o] | Serles Teaser | [Dlang Series Teaser] Dlang versus Python speed comparison (Matrix Multiply)

e | am actively adding matrix.d g]) [——

DLang p 1:00

m O re | e SSO n S (n e a rl y D L an q r Tepsoce ol | Series Teaser| Dlang versus Python (Matrix Multiply) #shorts series intro

matrix.py

100 already) about the D Language (DLang) ~ ['

Programming

year ago

[Dlang Episode 1] The D Programming Language - dlang

D programming I .

Public vV
I 85 videos 19,883 views Last updated on Dec 22, 2023
a n g u a g e ce 2) DEang Install ¢4 [Dlang Episode 2] D Language - setup on Linux (dmd, gdc, and Idc2 shown!)
A> N on Linux A
- Mike Shah + 1.8K views - 1 year ago
o https://www.youtube.com 22 snte
/ C/ M | ke S h a h Afull playlist on leaming the D y. [Dlang Episode 3] D Language - setup on Mac (Shown on Mac M1, DMD and LDC2)

- o [on Mac (M shoy
Programming language. A great starting enpr Mike Shah + 1.1K \ 1y 90

place for beginners to start, as we'll start & J

from the very beginning. This playlist will DLang T

also move towards more advanced)

features of the language as well - find it < 4 DLang Install [Dlang Episode 4] D Language - DMD command line and Visual D for Visual Studio (DMD and
all here! LDC2)

Mike Shah + 1.5K views * 1 year ago

[Dlang Episode 5] The Anatomy of a Hello World Application

Mike Shah + 1.4K views * rago

https://www.youtube.com/playlist?list=PLvv0ScY6vid9Fso-3cB4CGnSIW0QE4btJV

154

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

YouTube - C++

C++ Video Series Introduction | Modern Cpp Series

e | am actively adding TI
more lessons (nearly —

180 already) about the Pt Wy
&

C++ Workflow in a Compiled Language | Modern Cpp Series

Mike Shah « 6.5K

Language
H [S Video] Li S C++ | Modern Cpp S
C++ prog rammlng e C_t;hm M”e:tl:)uhl‘ej inux Setting up C++ | Modern Cpp Series
Public LINUX F

) " SETUP
a n g u a g e 185 videos 234,014 views Last updated on Apr 7, 2024

2ol R C++

with wike [
p Playall >3 Shuffle SETUP 5:44

This is a full introduction through

advanced topics series of videos on the C tt‘;‘:\k‘

C++ programming language. In this series VISUAL F‘

we cover modern C++ (C++11,14,17,20,23, STUDIO SETUP 9:32

etc.) programming, along side design,
style, patterns, and related C++ C

programming topics. t;’:\u F
HELLO
WORLD 7:18

Mike Shah « 37K view

o https://www.youtube.com
/c/MikeShah

[Setup Video] Visual Studio Setup for C++ | Modern Cpp Series

Mike Shah - §.

Hello World in C++ | Modern Cpp Series

Mike Shah « 4.6K

‘ [Setup Video] Setting up C++ on Mac (Shown on Apple M1) | Modern Cpp Series

[Advice] Making mistakes, make small changes when learning | Modern Cpp Series

Mike Shah « 3.7K

https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tthYVPYaqilyXduubm-L

155

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L

Teaching D Language

e You can hear my perspective
e Even better -- you can hear the
students perspective

(@)

e D Conf2023;

(@)

They built a networked collaborative
paint program that is also available.

YouTube:
https://www.youtube.com/live/wXTlaf
zIJVY?si=Xpy6g5h4wtlUrt2E&t=7711
Link to Conference Talk Description:
https://dconf.org/2023/index.html

N
Y
A

"A Semester at University: Teaching Softwae

Engineering in DLang

Mike Shah, Ph.D.
0, Wed, Aug. 30, 2023

eryone!

https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://dconf.org/2023/index.html

Teaching C++ Language

e You can hear my perspective from ACCU 2022.
e How | Teach Modern C++ One Pixel at a Time - Mike Shah - ACCU 2022

o YouTube: https://www.youtube.com/watch?v=qwCc MfAWk&t=2s

How | Teach Modern C++ One Pixel at a Time - Mike Shah - ACCU

2022
3.8K views * 1 year ago
HOW | TEACH MODERN C++ + ACGU Confrence
ONE PlXEL AT A TIME The C++ language has a reputation of being a very powerful, fast, and expressive, but it also has a reputation...

- Abstract | Who Am | | How the Language Scales | What's the Greatest.. 26 moments v/

MIKE SHAH

https://www.youtube.com/watch?v=qwCc__MfAWk&t=2s

Some Anecdotal Findings (My Own)

e Simply working in a language with different defaults, may be a top factor in
improving a programmers capabilities
o e.g. (In DLang: initialized memory, struct vs class, thread-local storage)
e Simply working in a language with a different standard library may improve
your programming capabilities
o If anyone wants to run this type of study -- I'm around at my academic job with some interest
in studying this problem (in theory forever)

158

But...If you remember just one

Goal thing after this talk:

1. Set a timer for one hour
2. Go to https://tour.dlang.org/
3. Try out the D Language

L

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

” FOSDEM'“ P Mike Shah + 812 views * 2 months ago

159

https://tour.dlang.org/

Apologies -- | missed these questions entered into slido after the talk

1. SafeRefCounted may be what you want for

a ‘smart pointer’
a. | believe there are other packages in ‘dub
repository’ that provide C++ like smart pointers
that are also thread-safe.

2. D’s stdlib has built-in types -- data
structures marked as immutable (e.g.
dynamic array) means the data referred to

cannot be changed.
a. You can otherwise have a dynamic array that can
add unchanging data (i.e. dynamic array storing
immutable values)

3. D does allow stack allocated classes using
'scoped’ (programmer now is responsible
for deallocation in correct scope)

@ Anonymous 06

D has GC and manual allocation. Does it also have smart pointers? That’s one of
C++/Rust superpowers, where people migrate from Go to Rust due to GC delays.

@ Anonymous 06

Does D’s stdlib provide immutable data structures (maps, lists,
e

@ Anonymous 0B

What's the technical reason for disallowing stack allocated class
instances?

std.stdio;
main(){
[1 cannotChangeStructure = [1,2,3,4];

writeln(cannotChangeStructure);
writeln(,cannotChangeStructure[©]);

(int)[] canAppend = [1,2,3,4];

canAppend ~= 1;

writeln(canAppend);

https://dlang.org/phobos/std_typecons.html#SafeRefCounted
https://dlang.org/phobos/std_typecons.html#scoped

aSCC U]

confFeraenca
2024

Thank you ACCU 2024!

How DLang Improves My
Modern C++ and Vice Versa

Mike Shah | 7 i e—
: - Social: @MichaelShah

o P Web: mshah.io

2 > Bl Courses: courses.mshah.jo
S, e .ol @3 YouTube

: B, W\ . youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

11:00 - 12:30 BST Wed. April 17, 2024

75 minutes + 15 minute Q&A After : .
Audience: For all and all skill levels! o sl >

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

